Back to Search Start Over

Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat[S]

Authors :
Randy C. Nelson
Miriam Jacome-Sosa
Martin J. T. Reaney
Rabban Mangat
Jonathan M. Curtis
Catherine J. Field
Donna F. Vine
Sebastiano Banni
Jianheng Shen
Abdoulaye Diane
Miki Igarashi
Claudia Vacca
Daniele Piomelli
Spencer D. Proctor
Source :
Journal of Lipid Research, Vol 57, Iss 4, Pp 638-649 (2016), Jacome-Sosa, M; Vacca, C; Mangat, R; Diane, A; Nelson, RC; Reaney, MJ; et al.(2016). Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat. JOURNAL OF LIPID RESEARCH, 57(4), 638-649. doi: 10.1194/jlr.M066308. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/10k3v3s8, Journal of Lipid Research
Publication Year :
2016
Publisher :
Elsevier, 2016.

Abstract

Vaccenic acid (VA), the predominant ruminant-derived trans fat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cp rats were assigned to a control diet with or without VA (1% w/w), cis-9, trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (P < 0.001), but did not change AA in tissue PLs. There was no additive effect of combining VA+CLA on 2-AG relative to VA alone (P > 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P < 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P < 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.

Details

Language :
English
ISSN :
00222275
Volume :
57
Issue :
4
Database :
OpenAIRE
Journal :
Journal of Lipid Research
Accession number :
edsair.doi.dedup.....858a7664375c1ca0b8e7ae8e4256647a