Back to Search
Start Over
Seasonality alters drivers of soil enzyme activity in subalpine grassland soil undergoing climate change
- Source :
- Soil Biology and Biochemistry, Soil Biology and Biochemistry, Elsevier, 2018, 124, pp.266-274. ⟨10.1016/j.soilbio.2018.06.023⟩
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- International audience; In mountain ecosystems with marked seasonality, climate change can affect various processes in soils, potentially modifying long-term key soil services via change in soil organic carbon (C) storage. Based on a four-year soil transplantation experiment in Swiss subalpine grasslands, we investigated how imposed climate warming and reduced precipitation modified the drivers of soil carbon enzyme potential activities across winter and summer seasons. Specifically, we used structural equation models (SEMs) to identify biotic (microbial community structure, abundance and activity) and abiotic (quantity and quality of organic matter resources) drivers of soil C-enzymes (hydrolase and oxidase) in two seasons under two different climate scenarios. We found contrasting impacts of the climate manipulation on the drivers of C-enzymes between winter and summer. In winter, no direct effect of climate manipulation (reduced rainfall and warming) on enzyme activity was observed. Yet, climate indirectly down-regulated enzyme activity through a decrease in the availability of water extractable organic carbon (WEOC) labile resources. During summer, reduced soil moisture -induced by the climate manipulation- directly reduced soil microbial biomass, which led to a decrease in C-enzyme activity. In general, across both seasons, neither microbial community structure, nor organic matter quality were strong determinants of enzymatic activity. In particular organic matter recalcitrance (aromaticity) was not found as a general driver of either hydrolase or oxidase C-enzyme potential activities, though we did observe higher C-enzyme activities led to an increase of particulate organic matter recalcitrance in the summer season. Overall, our results highlight the seasonality of climate change effects on soil organic matter enzymatic decomposition, providing a comprehensive picture of seasonal potential cause and effect relationships governing C mineralization in subalpine grassland.
- Subjects :
- temperature sensitivity
soil organic matter fractions
dissolved organic-matter
010504 meteorology & atmospheric sciences
growing-season
Soil Science
Climate change
01 natural sciences
Microbiology
climate manipulation
structural equation models
current knowledge
land-use
path analysis
Organic matter
Ecosystem
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
2. Zero hunger
chemistry.chemical_classification
decomposition
Soil organic matter
Global warming
04 agricultural and veterinary sciences
Soil carbon
Mineralization (soil science)
15. Life on land
SUISSE
carbon pools
chemistry
Agronomy
Agriculture and Soil Science
microbial community structure
13. Climate action
Soil water
soil microbial communities
040103 agronomy & agriculture
co2
0401 agriculture, forestry, and fisheries
Environmental science
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
recalcitrance
feedbacks
Subjects
Details
- Language :
- English
- ISSN :
- 00380717
- Database :
- OpenAIRE
- Journal :
- Soil Biology and Biochemistry, Soil Biology and Biochemistry, Elsevier, 2018, 124, pp.266-274. ⟨10.1016/j.soilbio.2018.06.023⟩
- Accession number :
- edsair.doi.dedup.....851cfca7267dbc98636cac054773d4aa
- Full Text :
- https://doi.org/10.1016/j.soilbio.2018.06.023⟩