Back to Search Start Over

VC-Dimension of Hyperplanes over Finite Fields

Authors :
Ascoli, Ruben
Betti, Livia
Cheigh, Justin
Iosevich, Alex
Jeong, Ryan
Liu, Xuyan
McDonald, Brian
Milgrim, Wyatt
Miller, Steven J.
Acosta, Francisco Romero
Iannuzzelli, Santiago Velazquez
Publication Year :
2023

Abstract

Let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field with $q$ elements. For a subset $E\subseteq \mathbb{F}_q^d$ and a fixed nonzero $t\in \mathbb{F}_q$, let $\mathcal{H}_t(E)=\{h_y: y\in E\}$, where $h_y$ is the indicator function of the set $\{x\in E: x\cdot y=t\}$. Two of the authors, with Maxwell Sun, showed in the case $d=3$ that if $|E|\geq Cq^{\frac{11}{4}}$ and $q$ is sufficiently large, then the VC-dimension of $\mathcal{H}_t(E)$ is 3. In this paper, we generalize the result to arbitrary dimension and improve the exponent in the case $d=3$.<br />9 pages, 1 figure

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8500cad903fdc982eefd6f04a10911d4