Back to Search Start Over

A highly active heparinase I from Bacteroides cellulosilyticus: Cloning, high level expression, and molecular characterization

Authors :
Cai-Yun Liu
Zhixiang Lv
Hong-Tao Zhu
Xiao-Man Fan
Ye-Wang Zhang
Li-Wei Gao
Source :
PLoS ONE, Vol 15, Iss 10, p e0240920 (2020), PLoS ONE
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

As one of the most extensively studied glycosaminoglycan lyases, heparinase I has been used in producing low or ultra-low molecular weight heparin. Its' important applications are to neutralize the heparin in human blood and analyze heparin structure in the clinic. However, the low productivity and activity of the enzyme have greatly hindered its applications. In this study, a novel Hep-I from Bacteroides cellulosilyticus (BcHep-I) was successfully cloned and heterologously expressed in E. coli BL21 (DE3) as a soluble protein. The molecular mass and isoelectric point (pI) of the enzyme are 44.42 kDa and 9.02, respectively. And the characterization of BcHep-I after purified with Ni-NTA affinity chromatography suggested that it is a mesophilic enzyme. BcHep-I can be activated by 1 mM Ca2+, Mg2+, and Mn2+, while severely inhibited by Zn2+, Co2+, and EDTA. The specific activity of the enzyme was 738.3 U·mg-1 which is the highest activity ever reported. The Km and Vmax were calculated as 0.17 mg·mL-1 and 740.58 U·mg-1, respectively. Besides, the half-life of 300 min at 30°C showed BcHep-I has practical applications. Homology modeling and substrate docking revealed that Gln15, Lys74, Arg76, Lys104, Arg149, Gln208, Tyr336, Tyr342, and Lys338 were mainly involved in the substrate binding of Hep-I, and 11 hydrogen bonds were formed between heparin and the enzyme. These results indicated that BcHep-I with high activity has great potential applications in the industrial production of heparin, especially in the clinic to neutralize heparin.

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
10
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....84d9e5a657ed560d8d2c4fa11fba7fd1