Back to Search
Start Over
Performance Analysis and Optimization of a Series Heat Exchangers Organic Rankine Cycle Utilizing Multi-Heat Sources from a Marine Diesel Engine
- Source :
- Entropy, Vol 23, Iss 906, p 906 (2021), Entropy, Volume 23, Issue 7
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Organic Rankine Cycle (ORC) is an effective way to recycle waste heat sources of a marine diesel engine. The aim of the present paper is to analyze and optimize the thermoeconomic performance of a Series Heat Exchangers ORC (SHEORC) for recovering energy from jacket water, scavenge air, and exhaust gas. The three sources are combined into three groups of jacket water (JW)→exhaust gas (EG), scavenge air (SA)→exhaust gas, and jacket water→scavenge air→exhaust gas. The influence of fluid mass flow rate, evaporation pressure, and heat source recovery proportion on the thermal performance and economic performance of SHEORC was studied. A single-objective optimization with power output as the objective and multi-objective optimization with exergy efficiency and levelized cost of energy (LCOE) as the objectives are carried out. The analysis results show that in jacket water→exhaust gas and jacket water→scavenge air→exhaust gas source combination, there is an optimal heat recovery proportion through which the SHEORC could obtain the best performance. The optimization results showed that R245ca has the best performance in thermoeconomic performance in all three source combinations. With scavenge air→exhaust, the power output, exergy efficiency, and LCOE are 354.19 kW, 59.02%, and 0.1150 $/kWh, respectively. Integrating the jacket water into the SA→EG group would not increase the power output, but would decrease the LCOE.
- Subjects :
- 020209 energy
Science
QC1-999
General Physics and Astronomy
02 engineering and technology
Diesel engine
Astrophysics
Article
020401 chemical engineering
Waste heat
Heat recovery ventilation
Heat exchanger
0202 electrical engineering, electronic engineering, information engineering
0204 chemical engineering
Cost of electricity by source
Process engineering
Organic Rankine cycle
business.industry
Physics
Exhaust gas
multi-heat sources
QB460-466
Organic Rankine Cycle
multi-objective optimization
Exergy efficiency
thermoeconomic analysis
Environmental science
business
marine diesel engine
Subjects
Details
- Language :
- English
- ISSN :
- 10994300
- Volume :
- 23
- Issue :
- 906
- Database :
- OpenAIRE
- Journal :
- Entropy
- Accession number :
- edsair.doi.dedup.....84cbea0b5dbe0161782546ed98c68602