Back to Search
Start Over
Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas, and Markov random fields using textural features
- Source :
- SPIE Remote Sensing, SPIE Remote Sensing, Sep 2010, Toulouse, France. ⟨10.1117/12.865023⟩
- Publication Year :
- 2010
- Publisher :
- SPIE, 2010.
-
Abstract
- International audience; This paper addresses the problem of the classification of very high resolution (VHR) SAR amplitude images of urban areas. The proposed supervised method combines a finite mixture technique to estimate class-conditional probability density functions, Bayesian classification, and Markov random fields (MRFs). Textural features, such as those extracted by the greylevel co-occurrency method, are also integrated in the technique, as they allow to improve the discrimination of urban areas. Copulas are applied to estimate bivariate joint class-conditional statistics, merging the marginal distributions of both textural and SAR amplitude features. The resulting joint distribution estimates are plugged into a hidden MRF model, endowed with a modified Metropolis dynamics scheme for energy minimization. Experimental results with COSMO-SkyMed and TerraSAR-X images point out the accuracy of the proposed method, also as compared with previous contextual classifiers.; Nous nous intéressons au problème de la classification d'images d'amplitude SAR très haute résolution, qui contiennent des zones urbaines. La méthode de classification supervisée proposée ici combine une estimation des fonctions de densité de probabilité, correspondant aux statistiques de chacune des classes envisagées, avec des champs de Markov. L'extraction de textures (e.g. GLCM) à partir de l'image SAR permet d'améliorer la classification par la discrimination des zones urbaines. L'introduction de copules permet le calcul d'une fonction de densité de probabilité conjointe pour chacune des classes à partir des densités marginales de l'image d'amplitude SAR et de sa texture, obtenues par calculs préalables. Ces estimations des densités conjointes, utiles pour l'apprentissage, sont introduites dans un modèle de Markov caché en vue d'établir la classification.
- Subjects :
- Synthetic aperture radar
Computer science
Copula (linguistics)
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
0211 other engineering and technologies
Probability density function
02 engineering and technology
01 natural sciences
010104 statistics & probability
Naive Bayes classifier
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Joint probability distribution
0101 mathematics
021101 geological & geomatics engineering
Random field
Markov chain
business.industry
Pattern recognition
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
Mixture model
ComputingMethodologies_PATTERNRECOGNITION
Artificial intelligence
Marginal distribution
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Subjects
Details
- ISSN :
- 0277786X
- Database :
- OpenAIRE
- Journal :
- SPIE Proceedings
- Accession number :
- edsair.doi.dedup.....84be4d7de000b414e04a22399c806bc1
- Full Text :
- https://doi.org/10.1117/12.865023