Back to Search Start Over

Fluid-driven origami-inspired artificial muscles

Authors :
Shuguang Li
Daniel M. Vogt
Daniela Rus
Robert J. Wood
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2017

Abstract

Significance Artificial muscles are flexible actuators with capabilities similar to, or even beyond, natural muscles. They have been widely used in many applications as alternatives to more traditional rigid electromagnetic motors. Numerous studies focus on rapid design and low-cost fabrication of artificial muscles with customized performances. Here, we present an architecture for fluidic artificial muscles with unprecedented performance-to-cost ratio. These artificial muscles can be programed to produce not only a single contraction but also complex multiaxial actuation, and even controllable motion with multiple degrees of freedom. Moreover, a wide variety of materials and fabrication processes can be used to build the artificial muscles with other functions beyond basic actuation.<br />Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

Details

ISSN :
10916490
Volume :
114
Issue :
50
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Accession number :
edsair.doi.dedup.....84b9367d27956590b343429984a70ccd