Back to Search Start Over

Lattice disorder effect on magnetic ordering of iron arsenides

Authors :
David S. Parker
Li Li
Yaohua Liu
Xiaoping Wang
Athena S. Sefat
Qiang Zou
Yogesh K. Vohra
Mimgming Fu
Zheng Gai
Kalaiselvan Ganesan
Source :
Scientific Reports, Scientific Reports, Vol 9, Iss 1, Pp 1-8 (2019)
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

This study investigates the changes of magnetic ordering temperature via nano- and mesoscale structural features in an iron arsenide. Although magnetic ground states in quantum materials can be theoretically predicted from known crystal structures and chemical compositions, the ordering temperature is harder to pinpoint due to such local lattice variations. In this work we find surprisingly that a locally disordered material can exhibit a significantly larger Neel temperature (TN) than an ordered material of precisely the same chemical stoichiometry. Here, a EuFe2As2 crystal, which is a 122 parent of iron arsenide superconductors, is found through synthesis to have ordering below TN = 195 K (for the disordered crystal) or TN = 175 K (for the ordered crystal). In the higher TN crystals, there are shorter planar Fe-Fe bonds [2.7692(2) A vs. 2.7745(3) A], a randomized in-plane defect structure, and diffuse scattering along the [00L] crystallographic direction that manifests as a rather broad specific heat peak. For the lower TN crystals, the a-lattice parameter is larger and the in-plane microscopic structure shows defect ordering along the antiphase boundaries, giving a larger TN and a higher superconducting temperature (Tc) upon the application of pressure. First principles calculations find a strong interaction between c-axis strain and interlayer magnetic coupling, but little impact of planar strain on the magnetic order. Neutron single-crystal diffraction shows that the low-temperature magnetic phase transition due to localized Eu moments is not lattice or disorder sensitive, unlike the higher-temperature Fe sublattice ordering. This study demonstrates a higher magnetic ordering point arising from local disorder in 122.<br />4 main figures

Details

ISSN :
20452322
Volume :
9
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....847fdefb54a610c99674c5a5bd2e9e50