Back to Search Start Over

Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys

Authors :
Michael J. Mills
Gopal B. Viswanathan
P.M. Sarosi
Ju Li
Raymond R. Unocic
S. Karthikeyan
Source :
IndraStra Global.
Publication Year :
2008
Publisher :
Elsevier, 2008.

Abstract

This paper reviews the presently proposed mechanisms for creep of {\gamma^{\prime}} strengthened Ni-base superalloys that are typically used for disk applications. Distinct creep strength controlling modes, such as dislocation-coupled antiphase-boundary shearing, shearing configurations involving superlattice stacking faults, Orowan looping, climb by-pass, and microtwinning have been observed. These are strongly influenced by the scale of the {\gamma^{\prime}} precipitating phase and are operative within specific ranges of temperature and stress. Insight from more recent experimental findings concerning microtwinning and extending stacking fault mechanisms suggest important similarities between these deformation modes. It is suggested that local atomic reordering in the wake of Shockley partials is responsible for the temperature dependence exhibited in this regime.

Details

Language :
English
ISSN :
23813652
Database :
OpenAIRE
Journal :
IndraStra Global
Accession number :
edsair.doi.dedup.....847f03929a39b08a72989640113fc508