Back to Search Start Over

Hypertonic saline downregulates endothelial cell-derived VEGF expression and reduces blood-brain barrier permeability induced by cerebral ischaemia via the VEGFR2/eNOS pathway

Authors :
Yiyu Deng
Wenqiang Jiang
Hongguang Ding
Wenxin Zeng
Hongke Zeng
Linqiang Huang
Qiaosheng Wang
Shenglong Chen
Miaoyun Wen
Bo Lv
Yongli Han
Source :
International Journal of Molecular Medicine
Publication Year :
2019
Publisher :
Spandidos Publications, 2019.

Abstract

The aim of the present study was to explore the possible mechanisms by which hypertonic saline (HS) effectively ameliorates cerebral oedema via the vascular endothelial growth factor receptor 2 (VEGFR2)-mediated endothelial nitric oxide synthase (eNOS) pathway of endothelial cells in rats. A middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and an oxygen-glucose deprivation (OGD) model in cells were used in the present study. Evans blue (EB) staining and a horseradish peroxidase flux assay were performed to evaluate the protective effect of 10% HS on the blood-brain barrier (BBB). The expression levels of vascular endothelial growth factor (VEGF), VEGFR2, zonula occludens 1 (ZO1) and occludin were quantified. The results demonstrated that 10% HS effectively reduced EB extravasation in the peri-ischaemic brain tissue. At 24 h after MCAO, the protein expression levels of VEGF and VEGFR2 in the peri-ischaemic brain tissue were downregulated following treatment with 10% HS. In vitro experiments demonstrated that the permeability of a monolayer endothelial cell barrier was decreased significantly following HS treatment. In addition, VEGF and VEGFR2 protein expression levels were increased in endothelial cells under hypoxic conditions, but that effect was suppressed by HS treatment. Furthermore, HS inhibited the downregulation of ZO1 and occludin effectively, possibly through the VEGFR2/phospholipase C γ1 (PLCγ1)/eNOS signalling pathway. In conclusion, 10% HS may alleviate cerebral oedema through reducing ischaemia-induced BBB permeability, as a consequence of inhibiting VEGFR2/PLCγ1/eNOS-mediated downregulation of ZO1 and occludin.

Details

ISSN :
1791244X and 11073756
Database :
OpenAIRE
Journal :
International Journal of Molecular Medicine
Accession number :
edsair.doi.dedup.....8459b5cfd7d8dca5e6811d7cf9fce718
Full Text :
https://doi.org/10.3892/ijmm.2019.4262