Back to Search Start Over

Segmentation with Active Contours

Authors :
Pierre-Frédéric Villard
Timothé Ruel
Clémence Bigeard
Fabien Pierre
Mathieu Amendola
Recalage visuel avec des modèles physiquement réalistes (TANGRAM)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Image Processing On Line, Image Processing On Line, IPOL-Image Processing on Line, 2021, 11, pp.120-141. ⟨10.5201/ipol.2021.298⟩, Image Processing On Line, 2021, 11, pp.120-141. ⟨10.5201/ipol.2021.298⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Active contours (also known as snakes) have shown their ability to introduce regularity on image segmentation. In contrast with level-set approaches, the active contours techniques based on a contour parameterization are able to maintain the initial topology of the area of interest. For this reason, it has been used in recent medical research for diaphragm segmentation. Most of the on-line codes for 2D/3D segmentation, as well as built-in Matlab toolboxes are based on level-set methods. Moreover, in the literature, the implementation details of active contours methods with meshes in three dimensions are tight, making tedious any reproduction of these techniques. In this paper, we give some details of the implementation of active contours in 2D/3D with meshes, especially about the choice of the use of a 2D/3D mesh and its refinement. We also explore the choice of the parameters with a quantitative study of their influence on the segmentation results. The 3D segmentation method has been applied to CT scan images of the lungs.

Details

Language :
English
ISSN :
21051232
Database :
OpenAIRE
Journal :
Image Processing On Line, Image Processing On Line, IPOL-Image Processing on Line, 2021, 11, pp.120-141. ⟨10.5201/ipol.2021.298⟩, Image Processing On Line, 2021, 11, pp.120-141. ⟨10.5201/ipol.2021.298⟩
Accession number :
edsair.doi.dedup.....8456490907141a0353a29d076634f173
Full Text :
https://doi.org/10.5201/ipol.2021.298⟩