Back to Search Start Over

Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control

Authors :
Franck Vidal
Mahmoud Eddrief
Carlo Spezzani
Renaud Delaunay
Victor H. Etgens
Horia Popescu
Massimiliano Marangolo
Maurizio Sacchi
Elettra Light source (ELETTRA)
Sincrotrone Trieste S.C.p.A.
Institut des Nanosciences de Paris (INSP)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
VEhicule DEcarboné et COmmuniquant et sa Mobilité (VeDeCom)
Synchrotron SOLEIL (SSOLEIL)
Centre National de la Recherche Scientifique (CNRS)
Elettra Light source ( ELETTRA )
Institut des Nanosciences de Paris ( INSP )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Chimie Physique - Matière et Rayonnement ( LCPMR )
VEhicule DEcarboné et COmmuniquant et sa Mobilité ( VeDeCom )
Synchroton SOLEIL
Source :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2015, 5, pp.8120. ⟨10.1038/srep08120⟩, Scientific Reports, Nature Publishing Group, 2015, 5, pp.8120. 〈10.1038/srep08120〉, Scientific Reports, 2015, 5, pp.8120. ⟨10.1038/srep08120⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth–transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2015, 5, pp.8120. ⟨10.1038/srep08120⟩, Scientific Reports, Nature Publishing Group, 2015, 5, pp.8120. 〈10.1038/srep08120〉, Scientific Reports, 2015, 5, pp.8120. ⟨10.1038/srep08120⟩
Accession number :
edsair.doi.dedup.....8428d8b693602b0293f721662d04b809
Full Text :
https://doi.org/10.1038/srep08120⟩