Back to Search Start Over

Multimodal Weibull Variational Autoencoder for Jointly Modeling Image-Text Data

Authors :
Zhengjue Wang
Sucheng Xiao
Mingyuan Zhou
Chaojie Wang
Hao Zhang
Bo Chen
Ning Han
Penghui Wang
Source :
IEEE Transactions on Cybernetics. 52:11156-11171
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

For multimodal representation learning, traditional black-box approaches often fall short of extracting interpretable multilayer hidden structures, which contribute to visualize the connections between different modalities at multiple semantic levels. To extract interpretable multimodal latent representations and visualize the hierarchial semantic relationships between different modalities, based on deep topic models, we develop a novel multimodal Poisson gamma belief network (mPGBN) that tightly couples the observations of different modalities via imposing sparse connections between their modality-specific hidden layers. To alleviate the time-consuming Gibbs sampler adopted by traditional topic models in the testing stage, we construct a Weibull-based variational inference network (encoder) to directly map the observations to their latent representations, and further combine it with the mPGBN (decoder), resulting in a novel multimodal Weibull variational autoencoder (MWVAE), which is fast in out-of-sample prediction and can handle large-scale multimodal datasets. Qualitative evaluations on bimodal data consisting of image-text pairs show that the developed MWVAE can successfully extract expressive multimodal latent representations for downstream tasks like missing modality imputation and multimodal retrieval. Further extensive quantitative results demonstrate that both MWVAE and its supervised extension sMWVAE achieve state-of-the-art performance on various multimodal benchmarks.

Details

ISSN :
21682275 and 21682267
Volume :
52
Database :
OpenAIRE
Journal :
IEEE Transactions on Cybernetics
Accession number :
edsair.doi.dedup.....84033d5bef2933764f638a36ecc52545