Back to Search
Start Over
Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: similarities with the Tohoku forearc
- Source :
- 2012 AGU Fall Meeting, 2012 AGU Fall Meeting, Dec 2012, United States, Tectonophysics, Tectonophysics, 2013, 603, pp.1-20. ⟨10.1016/j.tecto.2013.05.043⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, Tectonophysics, Elsevier, 2013, 603, pp.1-20. ⟨10.1016/j.tecto.2013.05.043⟩
- Publication Year :
- 2012
- Publisher :
- HAL CCSD, 2012.
-
Abstract
- The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore–onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes appears with kinks which increase the dip to 10–20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: “supraslab” earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and “deep flat-thrust” earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.<br />This work has been funded by the European Union FP6 NEST (New and Emerging Science and Technology) — INSIGHT programme, under project “THALES WAS RIGHT” no. 029080, by French National Research Agency (ANR) CATTELL programme, German National Science Foundation DFG and TMR of IFM-GEOMAR as well as INSU-CNRS (missions embarquants), and by CPER Martinique for OBSISMER.
- Subjects :
- Accretionary wedge
010504 meteorology & atmospheric sciences
Mantle wedge
2011 Mw 9 Tohoku-Oki earthquake
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
Chemical heterogeneity within the mantle wedge
[SDE.MCG]Environmental Sciences/Global Changes
Local earthquakes study by land- and OBS-networks
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
010502 geochemistry & geophysics
01 natural sciences
Interplate earthquake
Caribbean Oceanic Plateau
14. Life underwater
Forearc
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Earth-Surface Processes
Reflection and refraction seismics
geography
geography.geographical_feature_category
Volcanic arc
Subduction
Lesser Antilles subduction zone
Geophysics
Slab window
Martinique
Seismology
Geology
Subjects
Details
- Language :
- English
- ISSN :
- 00401951 and 18793266
- Database :
- OpenAIRE
- Journal :
- 2012 AGU Fall Meeting, 2012 AGU Fall Meeting, Dec 2012, United States, Tectonophysics, Tectonophysics, 2013, 603, pp.1-20. ⟨10.1016/j.tecto.2013.05.043⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, Tectonophysics, Elsevier, 2013, 603, pp.1-20. ⟨10.1016/j.tecto.2013.05.043⟩
- Accession number :
- edsair.doi.dedup.....83fa9ed376e701fc9a1713f423d93b39