Back to Search Start Over

Detail Restoration and Tone Mapping Networks for X-Ray Security Inspection

Authors :
Hyo Young Kim
Seung-Won Jung
Sung-Jea Ko
Seung Woo Park
Yong-Goo Shin
Source :
IEEE Access, Vol 8, Pp 197473-197483 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

X-ray imaging is one of the most widely used security measures for maintaining airport and transportation security. Conventional X-ray imaging systems typically apply tone-mapping (TM) algorithms to visualize high-dynamic-range (HDR) X-ray images on a standard 8-bit display device. However, X-ray images obtained through traditional TM algorithms often suffer from halo artifacts or detail loss in inter-object overlapping regions, which makes it difficult for an inspector to detect unsafe or hazardous objects. To alleviate these problems, this article proposes a deep learning-based TM method for X-ray inspection. The proposed method consists of two networks called detail-recovery network (DR-Net) and TM network (TM-Net). The goal of DR-Net is to restore the details in the input HDR image, whereas TM-Net aims to compress the dynamic range while preserving the restored details and preventing halo artifacts. Since there are no standard ground-truth images available for the TM of X-ray images, we propose a novel loss function for unsupervised learning of TM-Net. We also introduce a dataset synthesis technique using the Beer-Lambert law for supervised learning of DR-Net. Extensive experiments comparing the performance of our proposed method with state-of-the-art TM methods demonstrate that the proposed method not only achieves visually compelling results but also improves the quantitative performance measures such as FSITM and HDR-VDP-2.2.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....83f39cf35f7d79a0b6998e647cae67f1