Back to Search
Start Over
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
- Source :
- Grarup, N, Jørgensen, M E, Witte, D R, Hansen, T, Pedersen, O, ExomeBP Consortium, MAGIC Consortium & GIANT Consortium 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Mahajan, A, Wessel, J, Willems, S M, Zhao, W, Robertson, N R, Chu, A Y, Gan, W, Kitajima, H, Taliun, D, Rayner, N W, Guo, X, Lu, Y, Li, M, Jensen, R A, Hu, Y, Huo, S, Lohman, K K, Zhang, W, Cook, J P, Prins, B P, Flannick, J, Grarup, N, Trubetskoy, V V, Kravic, J, Kim, Y J, Rybin, D V, Yaghootkar, H, Müller-Nurasyid, M, Meidtner, K, Li-Gao, R, Varga, T V, Marten, J, Li, J, Smith, A V, An, P, Ligthart, S, Gustafsson, S, Malerba, G, Demirkan, A, Tajes, J F, Steinthorsdottir, V, Wuttke, M, Lecoeur, C, Preuss, M, Bielak, L F, Graff, M, Highland, H M, Morris, A & Hayward, C & Morris, A P 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Mahajan, A, Wessel, J, Willems, S M, Zhao, W, Robertson, N R, Chu, A Y, Gan, W, Kitajima, H, Taliun, D, Rayner, N W, Guo, X, Lu, Y, Li, M, Jensen, R A, Hu, Y, Huo, S, Lohman, K K, Zhang, W, Cook, J P, Prins, B P, Flannick, J, Grarup, N, Trubetskoy, V V, Kravic, J, Kim, Y J, Rybin, D V, Yaghootkar, H, Müller-Nurasyid, M, Meidtner, K, Li-Gao, R, Varga, T V, Marten, J, Li, J, Smith, A V, An, P, Ligthart, S, Gustafsson, S, Malerba, G, Demirkan, A, Tajes, J F, Steinthorsdottir, V, Wuttke, M, Lecoeur, C, Preuss, M, Bielak, L F, Graff, M, Highland, H M, Justice, A E, Liu, D J, Marouli, E, Peloso, G M, Warren, H R, ExomeBP Consortium, MAGIC Consortium, GIANT Consortium, Afaq, S, Afzal, S, Ahlqvist, E, Almgren, P, Amin, N, Bang, L B, Bertoni, A G, Bombieri, C, Bork-Jensen, J, Brandslund, I, Brody, J A, Burtt, N P, Canouil, M, Chen, Y-D I, Cho, Y S, Christensen, C, Eastwood, S V, Eckardt, K-U, Fischer, K, Gambaro, G, Giedraitis, V, Grove, M L, de Haan, H G, Hackinger, S, Hai, Y, Han, S, Tybjærg-Hansen, A, Hivert, M-F, Isomaa, B, Jäger, S, Jørgensen, M E, Jørgensen, T, Käräjämäki, A, Kim, B-J, Kim, S S, Koistinen, H A, Kovacs, P, Kriebel, J, Kronenberg, F, Läll, K, Lange, L A, Lee, J-J, Lehne, B, Li, H, Lin, K-H, Linneberg, A, Liu, C-T, Liu, J, Loh, M, Mägi, R, Mamakou, V, McKean-Cowdin, R, Nadkarni, G, Neville, M, Nielsen, S F, Ntalla, I, Peyser, P A, Rathmann, W, Rice, K, Rich, S S, Rode, L, Rolandsson, O, Schönherr, S, Selvin, E, Small, K S, Stančáková, A, Surendran, P, Taylor, K D, Teslovich, T M, Thorand, B, Thorleifsson, G, Tin, A, Tönjes, A, Varbo, A, Witte, D R, Wood, A R, Yajnik, P, Yao, J, Yengo, L, Young, R, Amouyel, P, Boeing, H, Boerwinkle, E, Bottinger, E P, Chowdhury, R, Collins, F S, Dedoussis, G, Dehghan, A, Deloukas, P, Ferrario, M M, Ferrieres, J, Florez, J C, Frossard, P, Gudnason, V, Harris, T B, Heckbert, S R, Howson, J M M, Ingelsson, M, Kathiresan, S, Kee, F, Kuusisto, J, Langenberg, C, Launer, L J, Lindgren, C M, Männistö, S, Meitinger, T, Melander, O, Mohlke, K L, Moitry, M, Morris, A P, Murray, A D, de Mutsert, R, Orho-Melander, M, Owen, K R, Perola, M, Peters, A, Province, M A, Rasheed, A, Ridker, P M, Rivadineira, F, Rosendaal, F R, Rosengren, A H, Salomaa, V, Sheu, W H-H, Sladek, R, Willer, C J, Blüher, M, Butterworth, A S, Chambers, J C, Chasman, D I, Danesh, J, van Duijn, C M, Dupuis, J, Franco, O H, Franks, P W, Froguel, P, Grallert, H, Groop, L, Kardia, S L R, Karpe, F, Kooner, J S, Köttgen, A, Kuulasmaa, K, Laakso, M, Lin, X, Lind, L, Liu, Y, Loos, R J F, Marchini, J, Metspalu, A, Mook-Kanamori, D O, Nordestgaard, B G, Palmer, C N A, Pankow, J S, Pedersen, O, Psaty, B M, Rauramaa, R, Sattar, N, Schulze, M B, Soranzo, N, Spector, T D, Stefansson, K, Stumvoll, M, Thorsteinsdottir, U, Tuomi, T, Tuomilehto, J, Wareham, N J, Wilson, J G, Zeggini, E, Scott, R A, Barroso, I, Frayling, T M, Goodarzi, M O, Meigs, J B, Boehnke, M, Saleheen, D, Morris, A P, Rotter, J I & McCarthy, M I 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, ExomeBP Consortium 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Nature Genetics, Nat. Genet. 50, 559-571 (2018), NATURE GENETICS, ExomeBP Consortium, MAGIC Consortium, GIANT Consortium, Witte, D R & Hansen, T 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Nature genetics, Nature Genetics, 50(4), 559-+. Nature Publishing Group, Nature Genetics, 50(4), 559
- Publication Year :
- 2018
-
Abstract
- Identification of coding variant associations for complex diseases offers a direct route to biological insight, but is dependent on appropriate inference concerning the causal impact of those variants on disease risk. We aggregated coding variant data for 81,412 type 2 diabetes (T2D) cases and 370,832 controls of diverse ancestry, identifying 40 distinct coding variant association signals (at 38 loci) reaching significance (p−7). Of these, 16 represent novel associations mapping outside known genome-wide association study (GWAS) signals. We make two important observations. First, despite a threefold increase in sample size over previous efforts, only five of the 40 signals are driven by variants with minor allele frequency 1.29. Second, we used GWAS data from 50,160 T2D cases and 465,272 controls of European ancestry to fine-map these associated coding variants in their regional context, with and without additional weighting to account for the global enrichment of complex trait association signals in coding exons. At the 37 signals for which we attempted fine-mapping, we demonstrate convincing support (posterior probability >80% under the “annotation-weighted” model) that coding variants are causal for the association at 16 (including novel signals involving POC5 p.His36Arg, ANKH p.Arg187Gln, WSCD2 p.Thr113Ile, PLCB3 p.Ser778Leu, and PNPLA3 p.Ile148Met). However, at 13 of the 37 loci, the associated coding variants represent “false leads” and naïve analysis could have led to an erroneous inference regarding the effector transcript mediating the signal. Accurate identification of validated targets is dependent on correct specification of the contribution of coding and non-coding mediated mechanisms at associated loci.
- Subjects :
- 0301 basic medicine
Male
Inference
Genome-wide association study
Whole Exome Sequencing
0302 clinical medicine
type 2 diabetes
coding variant associations signals
mechanistic inference
fine mapping
Coding region
Chromosome Mapping/statistics & numerical data
European Continental Ancestry Group/genetics
CONFERS SUSCEPTIBILITY
Exome sequencing
11 Medical and Health Sciences
Genetics
Genetics & Heredity
0303 health sciences
MAGIC Consortium
Chromosome Mapping
Whole Exome Sequencing/statistics & numerical data
Identification (information)
RARE VARIANTS
LOW-FREQUENCY
Female
ExomeBP Consortium
Life Sciences & Biomedicine
SUSCEPTIBILITY LOCI
Posterior probability
European Continental Ancestry Group
030209 endocrinology & metabolism
Context (language use)
Computational biology
Biology
GENOTYPE IMPUTATION
Article
White People
GENETIC ARCHITECTURE
03 medical and health sciences
SDG 3 - Good Health and Well-being
QUALITY-CONTROL
Exome Sequencing
Genome-Wide Association Study/statistics & numerical data
Journal Article
GIANT Consortium
Humans
Genetic Predisposition to Disease
GENOME-WIDE ASSOCIATION
Alleles
Genetic association
030304 developmental biology
FATTY LIVER-DISEASE
Science & Technology
Genetic Variation
06 Biological Sciences
Genetic architecture
Minor allele frequency
BODY-MASS INDEX
030104 developmental biology
Diabetes Mellitus, Type 2
Diabetes Mellitus, Type 2/classification
030217 neurology & neurosurgery
Coding (social sciences)
Genome-Wide Association Study
Developmental Biology
Subjects
Details
- Language :
- English
- ISSN :
- 10614036
- Database :
- OpenAIRE
- Journal :
- Grarup, N, Jørgensen, M E, Witte, D R, Hansen, T, Pedersen, O, ExomeBP Consortium, MAGIC Consortium & GIANT Consortium 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Mahajan, A, Wessel, J, Willems, S M, Zhao, W, Robertson, N R, Chu, A Y, Gan, W, Kitajima, H, Taliun, D, Rayner, N W, Guo, X, Lu, Y, Li, M, Jensen, R A, Hu, Y, Huo, S, Lohman, K K, Zhang, W, Cook, J P, Prins, B P, Flannick, J, Grarup, N, Trubetskoy, V V, Kravic, J, Kim, Y J, Rybin, D V, Yaghootkar, H, Müller-Nurasyid, M, Meidtner, K, Li-Gao, R, Varga, T V, Marten, J, Li, J, Smith, A V, An, P, Ligthart, S, Gustafsson, S, Malerba, G, Demirkan, A, Tajes, J F, Steinthorsdottir, V, Wuttke, M, Lecoeur, C, Preuss, M, Bielak, L F, Graff, M, Highland, H M, Morris, A & Hayward, C & Morris, A P 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Mahajan, A, Wessel, J, Willems, S M, Zhao, W, Robertson, N R, Chu, A Y, Gan, W, Kitajima, H, Taliun, D, Rayner, N W, Guo, X, Lu, Y, Li, M, Jensen, R A, Hu, Y, Huo, S, Lohman, K K, Zhang, W, Cook, J P, Prins, B P, Flannick, J, Grarup, N, Trubetskoy, V V, Kravic, J, Kim, Y J, Rybin, D V, Yaghootkar, H, Müller-Nurasyid, M, Meidtner, K, Li-Gao, R, Varga, T V, Marten, J, Li, J, Smith, A V, An, P, Ligthart, S, Gustafsson, S, Malerba, G, Demirkan, A, Tajes, J F, Steinthorsdottir, V, Wuttke, M, Lecoeur, C, Preuss, M, Bielak, L F, Graff, M, Highland, H M, Justice, A E, Liu, D J, Marouli, E, Peloso, G M, Warren, H R, ExomeBP Consortium, MAGIC Consortium, GIANT Consortium, Afaq, S, Afzal, S, Ahlqvist, E, Almgren, P, Amin, N, Bang, L B, Bertoni, A G, Bombieri, C, Bork-Jensen, J, Brandslund, I, Brody, J A, Burtt, N P, Canouil, M, Chen, Y-D I, Cho, Y S, Christensen, C, Eastwood, S V, Eckardt, K-U, Fischer, K, Gambaro, G, Giedraitis, V, Grove, M L, de Haan, H G, Hackinger, S, Hai, Y, Han, S, Tybjærg-Hansen, A, Hivert, M-F, Isomaa, B, Jäger, S, Jørgensen, M E, Jørgensen, T, Käräjämäki, A, Kim, B-J, Kim, S S, Koistinen, H A, Kovacs, P, Kriebel, J, Kronenberg, F, Läll, K, Lange, L A, Lee, J-J, Lehne, B, Li, H, Lin, K-H, Linneberg, A, Liu, C-T, Liu, J, Loh, M, Mägi, R, Mamakou, V, McKean-Cowdin, R, Nadkarni, G, Neville, M, Nielsen, S F, Ntalla, I, Peyser, P A, Rathmann, W, Rice, K, Rich, S S, Rode, L, Rolandsson, O, Schönherr, S, Selvin, E, Small, K S, Stančáková, A, Surendran, P, Taylor, K D, Teslovich, T M, Thorand, B, Thorleifsson, G, Tin, A, Tönjes, A, Varbo, A, Witte, D R, Wood, A R, Yajnik, P, Yao, J, Yengo, L, Young, R, Amouyel, P, Boeing, H, Boerwinkle, E, Bottinger, E P, Chowdhury, R, Collins, F S, Dedoussis, G, Dehghan, A, Deloukas, P, Ferrario, M M, Ferrieres, J, Florez, J C, Frossard, P, Gudnason, V, Harris, T B, Heckbert, S R, Howson, J M M, Ingelsson, M, Kathiresan, S, Kee, F, Kuusisto, J, Langenberg, C, Launer, L J, Lindgren, C M, Männistö, S, Meitinger, T, Melander, O, Mohlke, K L, Moitry, M, Morris, A P, Murray, A D, de Mutsert, R, Orho-Melander, M, Owen, K R, Perola, M, Peters, A, Province, M A, Rasheed, A, Ridker, P M, Rivadineira, F, Rosendaal, F R, Rosengren, A H, Salomaa, V, Sheu, W H-H, Sladek, R, Willer, C J, Blüher, M, Butterworth, A S, Chambers, J C, Chasman, D I, Danesh, J, van Duijn, C M, Dupuis, J, Franco, O H, Franks, P W, Froguel, P, Grallert, H, Groop, L, Kardia, S L R, Karpe, F, Kooner, J S, Köttgen, A, Kuulasmaa, K, Laakso, M, Lin, X, Lind, L, Liu, Y, Loos, R J F, Marchini, J, Metspalu, A, Mook-Kanamori, D O, Nordestgaard, B G, Palmer, C N A, Pankow, J S, Pedersen, O, Psaty, B M, Rauramaa, R, Sattar, N, Schulze, M B, Soranzo, N, Spector, T D, Stefansson, K, Stumvoll, M, Thorsteinsdottir, U, Tuomi, T, Tuomilehto, J, Wareham, N J, Wilson, J G, Zeggini, E, Scott, R A, Barroso, I, Frayling, T M, Goodarzi, M O, Meigs, J B, Boehnke, M, Saleheen, D, Morris, A P, Rotter, J I & McCarthy, M I 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, ExomeBP Consortium 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Nature Genetics, Nat. Genet. 50, 559-571 (2018), NATURE GENETICS, ExomeBP Consortium, MAGIC Consortium, GIANT Consortium, Witte, D R & Hansen, T 2018, ' Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes ', Nature Genetics, vol. 50, no. 4, pp. 559-571 . https://doi.org/10.1038/s41588-018-0084-1, Nature genetics, Nature Genetics, 50(4), 559-+. Nature Publishing Group, Nature Genetics, 50(4), 559
- Accession number :
- edsair.doi.dedup.....83ef38d341d4079e9196cb70cb035e2c