Back to Search Start Over

Hypoxia induces apoptosis by caspase activation accompanying cytochrome C release from mitochondria in MC3T3E1 osteoblasts. p38 MAPK is related in hypoxia-induced apoptosis

Authors :
Zang-Hee Lee
Honghee Kim
Soo-Wan Chae
Hyung-Ryong Kim
Han-Jung Chae
Sang-Chul Kim
Hyung-Min Kim
Nyeon-Hyoung An
Kyung-Soo Han
Source :
Immunopharmacology and immunotoxicology. 23(2)
Publication Year :
2001

Abstract

The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3E1 osteoblasts under hypoxic conditions (2% oxygen) resulted in apoptosis in a time-dependent manner estimated by DNA fragmentation assay and nuclear morphologystained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase- activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, western blot analysis was performed using anti-caspase-3 or -6 antibody. The 10-kDa protein, corresponding to the active products of caspase-3 and the 10-kDA protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which processing of the full length form of caspase-3 and -6 was evident. With a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we have observed that pre-treatment with SB203580, a selective p38 MAP kinase (p38 MAPK) inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203580 suppressed caspase-3 and -6-like protease activity by hypoxia up to 50%. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAP kinase -JNK/SAPK or ERK- was not or modestly activated. These results suggest that p38 MAPK positively regulates hypoxia-induced apoptosis in MC3T3E1 osteoblasts.

Details

ISSN :
08923973
Volume :
23
Issue :
2
Database :
OpenAIRE
Journal :
Immunopharmacology and immunotoxicology
Accession number :
edsair.doi.dedup.....83d77801c85799cffa82ad210d529050