Back to Search Start Over

Membrane protein megahertz crystallography at the European XFEL

Authors :
Stella Lisova
Jolanta Sztuk-Dambietz
Peter Schwander
Juraj Knoska
Alessandro Silenzi
Natasha Stander
Y. Gevorkov
Oleksandr Yefanov
Saša Bajt
Johan Bielecki
Shatabdi Roy-Chowdhury
Jesse Coe
Cyril Danilevski
Nasser Al-Qudami
Marius Schmidt
Matthew A. Coleman
James Zook
Christopher J. Gisriel
Ahmad Hosseinizadeh
Anton Barty
Megan L. Shelby
Djelloul Boukhelef
Jose M. Martin-Garcia
Marc Messerschmidt
Jose D. Meza
Luis Maia
Henry N. Chapman
Katerina Dörner
Yoonhee Kim
Grant Mills
Mark S. Hunter
Krzysztof Wrona
Gerrit Brehm
Sandor Brockhauser
Erin Discianno
Silvan Schön
Abbas Ourmazd
Tokushi Sato
Christopher Kupitz
John C. H. Spence
Adrian P. Mancuso
Richard Bean
Iosifina Sarrou
Steffen Hauf
Hans Fangohr
Valerio Mariani
Gianpietro Previtali
Cesar Luna-Chavez
Thomas Michelat
Steve Aplin
Manuela Kuhn
Austin Echelmeier
Britta Weinhausen
Jorvani Cruz Villarreal
Thomas D. Grant
Janusz Szuba
Maurizio Manetti
Barry D. Bruce
Gihan K. Ketawala
Monica Turcato
Jay How Yang
Raimund Fromme
Mohamed H. Abdellatif
Petra Fromme
Sabine Botha
Max O. Wiedorn
Richard A. Kirian
Romain Letrun
Matthias Frank
Friederike Januschek
Alexandra Ros
Alex Jones
Jyotirmoy Mondal
Victoria Mazalova
Chen Xu
Thomas A. White
Zachary Dobson
Nadia A. Zatsepin
Source :
Nature Communications 1 (10): 5021 (2019-12-01), Nature Communications, Nature Communications, Vol 10, Iss 1, Pp 1-11 (2019), Nature communications, vol 10, iss 1, Nature Communications 10(1), 11 (2019). doi:10.1038/s41467-019-12955-3
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

Nature Communications 10(1), 11 (2019). doi:10.1038/s41467-019-12955-3<br />The world’s first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.<br />Published by Nature Publishing Group UK, [London]

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature Communications 1 (10): 5021 (2019-12-01), Nature Communications, Nature Communications, Vol 10, Iss 1, Pp 1-11 (2019), Nature communications, vol 10, iss 1, Nature Communications 10(1), 11 (2019). doi:10.1038/s41467-019-12955-3
Accession number :
edsair.doi.dedup.....83ce2a4c66251524953d342e7d8ce69e