Back to Search
Start Over
Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels
- Source :
- Journal of Biomedical Materials Research Part B: Applied Biomaterials. 106:954-964
- Publication Year :
- 2017
- Publisher :
- Wiley, 2017.
-
Abstract
- Polyethylene glycol terephthalate (PET) fabrics with woven structures have proved to be quite effective for use on large diameter artificial blood vessels. However, their use within small-diameter artificial blood vessels has been associated with poor long-term patency, a problem resulting from slow endothelialization on PET and an over hyperplasia of smooth muscle cells. Previous research from our laboratory has revealed that ICAM-1 can be used as a marker to investigate cell adhesion, an effect which was closely associated with cell behavior on the surface of polycaprolactone (PCL) films. Moreover, we found that the coarseness or pore size of the surface exerts considerable influence on cell adhesion and proliferation on PCL films. In this study, we successfully fabricated six types of PET woven fabrics with varying gradients of tightness and porosities. Levels of ICAM-1 expression (membrane ICAM-1 & soluble ICAM-1) were then determined in these woven fabrics. Our results show that increased levels of mICAM-1 and decreased levels of sICAM-1 expression were obtained in HUVECs seeded on these six samples. These findings indicate that cell adhesion and proliferation on fabric surfaces were strongly influenced by their structural parameters, in particular the initial adhesion between the cell and fabric surface. In addition, we also found that extracellular matrix adhesion tends to prefer flat and tight surfaces, which promotes cell-cell and cell-matrix interactions, as well as the endothelialization on the surface of PET fabrics. These findings provide some novel insights with regard to the design and application of small-diameter artificial blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 954-964, 2018.
- Subjects :
- Materials science
Biocompatibility
Biomedical Engineering
Biocompatible Materials
02 engineering and technology
Polyethylene glycol
Prosthesis Design
010402 general chemistry
01 natural sciences
Polyethylene Glycols
Biomaterials
Extracellular matrix
chemistry.chemical_compound
Materials Testing
Cell Adhesion
Human Umbilical Vein Endothelial Cells
Humans
Composite material
Cell adhesion
Cell Proliferation
ICAM-1
Tissue Engineering
Polyethylene Terephthalates
technology, industry, and agriculture
Adhesion
Intercellular Adhesion Molecule-1
021001 nanoscience & nanotechnology
Blood Vessel Prosthesis
0104 chemical sciences
Membrane
chemistry
Polycaprolactone
Blood Vessels
0210 nano-technology
Porosity
Subjects
Details
- ISSN :
- 15524981 and 15524973
- Volume :
- 106
- Database :
- OpenAIRE
- Journal :
- Journal of Biomedical Materials Research Part B: Applied Biomaterials
- Accession number :
- edsair.doi.dedup.....83559bf2014be3b43b95e34e824b8603