Back to Search Start Over

Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels

Authors :
Guoping Guan
Yufen Wu
Xingyou Hu
Lu Wang
Shaoting Yu
Tao Hu
Source :
Journal of Biomedical Materials Research Part B: Applied Biomaterials. 106:954-964
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Polyethylene glycol terephthalate (PET) fabrics with woven structures have proved to be quite effective for use on large diameter artificial blood vessels. However, their use within small-diameter artificial blood vessels has been associated with poor long-term patency, a problem resulting from slow endothelialization on PET and an over hyperplasia of smooth muscle cells. Previous research from our laboratory has revealed that ICAM-1 can be used as a marker to investigate cell adhesion, an effect which was closely associated with cell behavior on the surface of polycaprolactone (PCL) films. Moreover, we found that the coarseness or pore size of the surface exerts considerable influence on cell adhesion and proliferation on PCL films. In this study, we successfully fabricated six types of PET woven fabrics with varying gradients of tightness and porosities. Levels of ICAM-1 expression (membrane ICAM-1 & soluble ICAM-1) were then determined in these woven fabrics. Our results show that increased levels of mICAM-1 and decreased levels of sICAM-1 expression were obtained in HUVECs seeded on these six samples. These findings indicate that cell adhesion and proliferation on fabric surfaces were strongly influenced by their structural parameters, in particular the initial adhesion between the cell and fabric surface. In addition, we also found that extracellular matrix adhesion tends to prefer flat and tight surfaces, which promotes cell-cell and cell-matrix interactions, as well as the endothelialization on the surface of PET fabrics. These findings provide some novel insights with regard to the design and application of small-diameter artificial blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 954-964, 2018.

Details

ISSN :
15524981 and 15524973
Volume :
106
Database :
OpenAIRE
Journal :
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Accession number :
edsair.doi.dedup.....83559bf2014be3b43b95e34e824b8603