Back to Search Start Over

Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies

Authors :
Mariana Fitarelli-Kiehl
G. Mike Makrigiorgos
Ioannis Ladas
Chen Song
Ravina Ashtaputre
Matthew H. Kulke
Harvey J. Mamon
Ka Wai Leong
Fangyan Yu
Source :
Nucleic Acids Research
Publication Year :
2018
Publisher :
Oxford University Press (OUP), 2018.

Abstract

Detection of microsatellite-instability in colonoscopy-obtained polyps, as well as in plasma-circulating DNA, is frequently confounded by sensitivity issues due to co-existing excessive amounts of wild-type DNA. While also an issue for point mutations, this is particularly problematic for microsatellite changes, due to the high false-positive artifacts generated by polymerase slippage (stutter-bands). Here, we describe a nuclease-based approach, NaME-PrO, that uses overlapping oligonucleotides to eliminate unaltered micro-satellites at the genomic DNA level, prior to PCR. By appropriate design of the overlapping oligonucleotides, NaME-PrO eliminates WT alleles in long single-base homopolymers ranging from 10 to 27 nucleotides in length, while sparing targets containing variable-length indels at any position within the homopolymer. We evaluated 5 MSI targets individually or simultaneously, NR27, NR21, NR24, BAT25 and BAT26 using DNA from cell-lines, biopsies and circulating-DNA from colorectal cancer patients. NaME-PrO enriched altered microsatellites and detected alterations down to 0.01% allelic-frequency using high-resolution-melting, improving detection sensitivity by 500–1000-fold relative to current HRM approaches. Capillary-electrophoresis also demonstrated enhanced sensitivity and enrichment of indels 1–16 bases long. We anticipate application of this highly-multiplex-able method either with standard 5-plex reactions in conjunction with HRM/capillary electrophoresis or massively-parallel-sequencing-based detection of MSI on numerous targets for sensitive MSI-detection.

Details

ISSN :
13624962 and 03051048
Volume :
46
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....83555c991754b6cbf3d9818848318587