Back to Search
Start Over
Global Solutions of the Nernst-Planck-Euler Equations
- Publication Year :
- 2021
-
Abstract
- We consider the initial value problem for the Nernst-Planck equations coupled to the incompressible Euler equations in $\mathbb T^2$. We prove global existence of weak solutions for vorticity in $L^p$. We also obtain global existence and uniqueness of smooth solutions. We show that smooth solutions of the Nernst-Planck-Navier-Stokes equations converge to solutions of the Nernst-Planck-Euler equations as viscosity tends to zero. All the results hold for large data.
- Subjects :
- Mathematics::General Mathematics
Applied Mathematics
Mathematical analysis
Vorticity
Euler equations
Physics::Fluid Dynamics
Computational Mathematics
symbols.namesake
Mathematics - Analysis of PDEs
Condensed Matter::Superconductivity
symbols
Euler's formula
FOS: Mathematics
Initial value problem
Nernst equation
Incompressible euler equations
Planck
Physics::Chemical Physics
Analysis
35Q35
Mathematics
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....8317ef260d4e02fd013bc2f4153502eb