Back to Search Start Over

Joint Eigenfunctions for the Relativistic Calogero–Moser Hamiltonians of Hyperbolic Type. III. Factorized Asymptotics

Authors :
Martin Hallnäs
Simon Ruijsenaars
Publication Year :
2020
Publisher :
Oxford University Press, 2020.

Abstract

In the two preceding parts of this series of papers, we introduced and studied a recursion scheme for constructing joint eigenfunctions $J_N(a_+, a_-,b;x,y)$ of the Hamiltonians arising in the integrable $N$-particle systems of hyperbolic relativistic Calogero-Moser type. We focused on the first steps of the scheme in Part I, and on the cases $N=2$ and $N=3$ in Part II. In this paper, we determine the dominant asymptotics of a similarity transformed function $\rE_N(b;x,y)$ for $y_j-y_{j+1}\to\infty$, $j=1,\ldots, N-1$, and thereby confirm the long standing conjecture that the particles in the hyperbolic relativistic Calogero-Moser system exhibit soliton scattering. This result generalizes a main result in Part II to all particle numbers $N>3$.<br />21 pages

Details

Language :
English
ISSN :
10737928
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....83073671357d97ea6c33c2131fe1c93f