Back to Search Start Over

Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations

Authors :
Canghai Ma
Xinle Li
Jian Zhang
Yi Liu
Jeffrey J. Urban
Source :
ACS applied materials & interfaces, vol 12, iss 14
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Membrane-based separations can mitigate the capital- and energy-intensive challenges associated with traditional thermally driven processes. To further push the boundary of gas separations, mixed matrix membranes (MMMs) have been extensively exploited; however, identifying an optimal nanofiller to boost the separation performance of MMMs beyond Robeson permeability-selectivity upper bounds remains an ongoing challenge. Here, a new class of MMMs based on pyrazine-fused crystalline porous graphitic frameworks (PGFs) is reported. At a loading of 6 wt % PGFs, the MMMs surpass the current H2/CH4 Robeson upper bound, ideally suited for applications such as H2 regeneration. In addition, the fabricated MMMs exhibit appealing CO2 separation performance, closely approaching the current Robeson upper bounds for CO2 separation. Compared with the pristine polymeric membranes, the PGF-based MMMs display a record-high enhancement of gas permeability over 120% while maintaining intrinsic gas selectivities. Highlighting the crucial role of the crystallinity of nanofillers, this study demonstrates a facile and effective approach in formulating high-performance MMMs, complementing state-of-the-art membrane formation processes. The design principles open the door to energy-efficient separations of gas mixtures with enhanced productivity compatible with the current membrane manufacturing.

Details

ISSN :
19448252 and 19448244
Volume :
12
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....82da5e9f90d6575de78249665a925c27