Back to Search
Start Over
Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes
- Source :
- Molecular Neurobiology. 6:225-237
- Publication Year :
- 1992
- Publisher :
- Springer Science and Business Media LLC, 1992.
-
Abstract
- Axonal transport is known to be impaired in peripheral nerve of experimentally diabetic rats. As axonal transport is dependent on the integrity of the neuronal cytoskeleton, we have studied the way in which rat brain and nerve cytoskeletal proteins are altered in experimental diabetes. Rats were made diabetic by injection of streptozotocin (STZ). Up to six weeks later, sciatic nerves, spinal cords, and brains were removed and used to prepare neurofilaments, microtubules, and a crude preparation of cytoskeletal proteins. The extent of nonenzymatic glycation of brain microtubule proteins and peripheral nerve tubulin was assessed by incubation with 3H-sodium borohydride followed by separation on two-dimensional polyacrylamide gels and affinity chromatography of the separated proteins. There was no difference in the nonenzymatic glycation of brain microtubule proteins from two-week diabetic and nondiabetic rats. Nor was the assembly of microtubule proteins into microtubules affected by the diabetic state. On the other hand, there was a significant increase in nonenzymatic glycation of sciatic nerve tubulin after 2 weeks of diabetes. We also identified an altered electrophoretic mobility of brain actin from a cytoskeletal protein preparation from brain of 2 week and 6 week diabetic rats. An additional novel polypeptide was demonstrated with a slightly more acidic isoelectric point than actin that could be immunostained with anti-actin antibodies. The same polypeptide could be produced by incubation of purified actin with glucose in vitro, thus identifying it as a product of nonenzymatic glycation. These results are discussed in relation to data from a clinical study of diabetic patients in which we identified increased glycation of platelet actin. STZ-diabetes also led to an increase in the phosphorylation of spinal cord neurofilament proteins in vivo during 6 weeks of diabetes. This hyperphosphorylation along with a reduced activity of a neurofilament-associated protein kinase led to a reduced incorporation of 32P into purified neurofilament proteins when they were incubated with 32P-ATP in vitro. Our combined data show a number of posttranslation modifications of neuronal cytoskeletal proteins that may contribute to the altered axonal transport and subsequent nerve dysfunction in experimental diabetes.
- Subjects :
- Adult
Blood Platelets
Glycosylation
Neurofilament
Swine
Neuroscience (miscellaneous)
Hyperphosphorylation
Nerve Tissue Proteins
Diabetes Mellitus, Experimental
Cellular and Molecular Neuroscience
Adenosine Triphosphate
Neurofilament Proteins
Tubulin
Microtubule
Glycation
Animals
Humans
Phosphorylation
Rats, Wistar
Cytoskeleton
biology
Brain
Sciatic Nerve
Actins
Rats
Cytoskeletal Proteins
Diabetes Mellitus, Type 1
Spinal Cord
Neurology
Biochemistry
Microtubule Proteins
biology.protein
Axoplasmic transport
Female
Sciatic nerve
Protein Processing, Post-Translational
Subjects
Details
- ISSN :
- 15591182 and 08937648
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- Molecular Neurobiology
- Accession number :
- edsair.doi.dedup.....82da3b552c17eedb7577213450dc031a
- Full Text :
- https://doi.org/10.1007/bf02780555