Back to Search
Start Over
A community effort to assess and improve drug sensitivity prediction algorithms
- Source :
- Nature Biotechnology, Nature Biotechnology, Nature Publishing Group, 2014, 32, pp.1202-1212. 〈10.1038/nbt.2877〉, Nature Biotechnology, 2014, 32, pp.1202-1212. ⟨10.1038/nbt.2877⟩, Nature Biotechnology, Nature Publishing Group, 2014, 32, pp.1202-1212. ⟨10.1038/nbt.2877⟩, Costello, J C, Heiser, L M, Georgii, E, Gönen, M, Menden, M P, Wang, N J, Bansal, M, Ammad-ud-din, M, Hintsanen, P, Khan, S A, Mpindi, J, Kallioniemi, O, Honkela, A, Aittokallio, T, Wennerberg, K, Collins, J J, Gallahan, D, Singer, D, Saez-rodriguez, J, Kaski, S, Gray, J W & Stolovitzky, G 2014, ' A community effort to assess and improve drug sensitivity prediction algorithms ', Nature biotechnology, vol. 32, no. 12, pp. 1202-1212 . https://doi.org/10.1038/nbt.2877
- Publication Year :
- 2014
- Publisher :
- HAL CCSD, 2014.
-
Abstract
- Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.<br />MaGNeT grant 5U54CA121852-08; National Institutes of Health, National Cancer Institute (U54 CA 112970); Stand Up To Cancer-American Association for Cancer Research Dream Team Translational Cancer Research (SU2C-AACR-DT0409); Prospect Creek Foundation; Howard Hughes Medical Institute (HHMI); Academy of Finland (Finnish Center of Excellence in Computational Inference Research COIN) (251170--140057)
- Subjects :
- Epigenomics
Proteomics
Biological pathways
Inference
computer.software_genre
Genomic information
Applied Microbiology and Biotechnology
0302 clinical medicine
Neoplasms
Computational models
Profiling (information science)
ta518
[ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
ta515
ComputingMilieux_MISCELLANEOUS
0303 health sciences
Computational model
ta213
Genomics
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
3. Good health
Gene Expression Regulation, Neoplastic
030220 oncology & carcinogenesis
Molecular Medicine
Algorithms
Biotechnology
Data integration
Bayesian probability
Biomedical Engineering
Antineoplastic Agents
Bioengineering
Biology
Machine learning
Article
03 medical and health sciences
Humans
030304 developmental biology
ta113
ta112
Proteomic Profiling
business.industry
Gene Expression Profiling
Precision medicine
Drug Resistance, Neoplasm
ta5141
Gene expression
Artificial intelligence
business
computer
Forecasting
Subjects
Details
- Language :
- English
- ISSN :
- 10870156
- Database :
- OpenAIRE
- Journal :
- Nature Biotechnology, Nature Biotechnology, Nature Publishing Group, 2014, 32, pp.1202-1212. 〈10.1038/nbt.2877〉, Nature Biotechnology, 2014, 32, pp.1202-1212. ⟨10.1038/nbt.2877⟩, Nature Biotechnology, Nature Publishing Group, 2014, 32, pp.1202-1212. ⟨10.1038/nbt.2877⟩, Costello, J C, Heiser, L M, Georgii, E, Gönen, M, Menden, M P, Wang, N J, Bansal, M, Ammad-ud-din, M, Hintsanen, P, Khan, S A, Mpindi, J, Kallioniemi, O, Honkela, A, Aittokallio, T, Wennerberg, K, Collins, J J, Gallahan, D, Singer, D, Saez-rodriguez, J, Kaski, S, Gray, J W & Stolovitzky, G 2014, ' A community effort to assess and improve drug sensitivity prediction algorithms ', Nature biotechnology, vol. 32, no. 12, pp. 1202-1212 . https://doi.org/10.1038/nbt.2877
- Accession number :
- edsair.doi.dedup.....828dbdf7dd3e287d9ab209498c4365a5