Back to Search Start Over

NFκB-Activated COX2/PGE2/EP4 Axis Controls the Magnitude and Selectivity of BCG-Induced Inflammation in Human Bladder Cancer Tissues

Authors :
Per H. Basse
Omar M. Ibrahim
Gurkamal Chatta
Weijian Jiang
Khurshid A. Guru
Pawel Kalinski
Source :
Cancers, Vol 13, Iss 1323, p 1323 (2021), Cancers, Volume 13, Issue 6
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Bacillus Calmette-Guérin (BCG) is commonly used in the immunotherapy of bladder cancer (BlCa) but its effectiveness is limited to only a fraction of patients. To identify the factors that regulate the response of human BlCa tumor microenvironment (TME) to BCG, we used the ex vivo whole-tissue explant model. The levels of COX2 in the BCG-activated explants closely correlated with the local production of Treg- and MDSCS attractants and suppressive factors, while the baseline COX2 levels did not have predictive value. Accordingly, we observed that BCG induced high levels of MDSC- and Treg-attracting chemokines (CCL22, CXCL8, CXCL12) and suppressive factors (IDO1, IL-10, NOS2). These undesirable effects were associated with the nuclear translocation of phosphorylated NFκB, induction of COX2, the key enzyme controlling PGE2 synthesis, and elevation of a PGE2 receptor, EP4. While NFκB blockade suppressed both the desirable and undesirable components of BCG-driven inflammation, the inhibitors of PGE2 synthesis (Celecoxib or Indomethacin) or signaling (EP4-selective blocker, ARY-007), selectively eliminated the induction of MDSC/Treg attractants and immunosuppressive factors but enhanced the production of CTL attractants, CCL5, CXCL9 and CXCL10. PGE2 blockade allowed for the selectively enhanced migration of CTLs to the BCG-treated BlCa samples and eliminated the enhanced migration of Tregs. Since the balance between the CTLs and suppressive cells in the TME predicts the outcomes in patients with BlCa and other diseases, our data help to elucidate the mechanisms which limit the effectiveness of BCG therapies and identify new targets to enhance their therapeutic effects.

Details

ISSN :
20726694
Volume :
13
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....827aa028e590c7d2c13827171d5c8c7b
Full Text :
https://doi.org/10.3390/cancers13061323