Back to Search Start Over

NH4FeCl2(HCOO): Synthesis, Structure, and Magnetism of a Novel Low-Dimensional Magnetic Material

Authors :
Nezhueyotl Izquierdo
Michael Chen
Saeed Kamali
Kirill Kovnir
Joshua T. Greenfield
Publication Year :
2014

Abstract

Solvothermal synthesis was used to create a low-dimensional iron(II) chloride formate compound, NH4FeCl2(HCOO), that exhibits interesting magnetic properties. NH4FeCl2(HCOO) crystallizes in the monoclinic space group C2/c (No. 15) with a = 7.888(1) Å, b = 11.156(2) Å, c = 6.920(2) Å, and β = 108.066(2)°. The crystal structure consists of infinite zigzag chains of distorted Fe(2+)-centered octahedra linked by μ2-Cl and syn-syn formate bridges, with interchain hydrogen bonding through NH4(+) cations holding the chains together. The unique Fe(2+) site is coordinated by four equatorial chlorides at a distance of 2.50 Å and two axial oxygens at a distance of 2.08 Å. Magnetic measurements performed on powder and oriented single-crystal samples show complex anisotropic magnetic behavior dominated by antiferromagnetic interactions (TN = 6 K) with a small ferromagnetic component in the direction of chain propagation. An anisotropic metamagnetic transition was observed in the ordered state at 2 K in an applied magnetic field of 0.85-3 T. (57)Fe Mössbauer spectroscopy reveals mixed hyperfine interactions below the ordering temperature, with strong electric field gradients and complex noncollinear arrangement of the magnetic moments.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8240052e89101cb58915b246f49bc1b0