Back to Search Start Over

Ultrafast terahertz magnetometry

Authors :
Jacek Arabski
Dmitry Turchinovich
Tom Seifert
Eric Beaurepaire
Guy Schmerber
Peter M. Oppeneer
Wentao Zhang
Zuanming Jin
Mischa Bonn
Pablo Maldonado
Tobias Kampfrath
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE)
Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-9 (2020), Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-17935-6⟩, Nature Communications, 11 (1)
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

A material’s magnetic state and its dynamics are of great fundamental research interest and are also at the core of a wide plethora of modern technologies. However, reliable access to magnetization dynamics in materials and devices on the technologically relevant ultrafast timescale, and under realistic device-operation conditions, remains a challenge. Here, we demonstrate a method of ultrafast terahertz (THz) magnetometry, which gives direct access to the (sub-)picosecond magnetization dynamics even in encapsulated materials or devices in a contact-free fashion, in a fully calibrated manner, and under ambient conditions. As a showcase for this powerful method, we measure the ultrafast magnetization dynamics in a laser-excited encapsulated iron film. Our measurements reveal and disentangle distinct contributions originating from (i) incoherent hot-magnon-driven magnetization quenching and (ii) coherent acoustically-driven modulation of the exchange interaction in iron, paving the way to technologies utilizing ultrafast heat-free control of magnetism. High sensitivity and relative ease of experimental arrangement highlight the promise of ultrafast THz magnetometry for both fundamental studies and the technological applications of magnetism.<br />Nature Communications, 11 (1)<br />ISSN:2041-1723

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....823478fa6296f006588b66e4e7ae508a
Full Text :
https://doi.org/10.1038/s41467-020-17935-6