Back to Search Start Over

Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement

Authors :
Florian Monlau
Abdellatif Barakat
Abderrahim Solhy
Hélène Carrère
Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)
Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE)
Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université Mohammed VI Polytechnique
Source :
Applied Energy, Applied Energy, Elsevier, 2015, 142, pp.240-246. ⟨10.1016/j.apenergy.2014.12.076⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

International audience; Mechanical size reduction is considered as a primordial step of current and future lignocellulosic biorefinery. In this sense, it is of high interest to understand who are the biochemical and structural features of the lignocellulosic biomass, which affect the Specific Energy Requirement (SER), and in consequence the cost of mechanical size reduction processes. First, it was shown that the initial moisture content of the lignocellulosic biomass affect the SER and the final particle size distribution. The highest the moisture content gives raise the highest SER. Then, at fixed initial moisture content (≈7% DW), structural and biochemical features of lignocellulosic biomass that can affect the SER were determined. It was noticed that both arabinose/xylose ratio and accessible surface area lead to increasing the SER. On the contrary, the content of cellulose, lignin, crystallinity and p-coumaric acids links were found to have a positive effect on the reduction of the SER.

Details

ISSN :
03062619
Volume :
142
Database :
OpenAIRE
Journal :
Applied Energy
Accession number :
edsair.doi.dedup.....81e3094ccd31ae61420f976ae5f87787
Full Text :
https://doi.org/10.1016/j.apenergy.2014.12.076