Back to Search
Start Over
Design and performance of a second-generation surface-induced dissociation cell for Fourier transform ion cyclotron resonance mass spectrometry of native protein complexes
- Publication Year :
- 2019
-
Abstract
- A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.
- Subjects :
- Streptavidin
Fourier Analysis
Chemistry
Surface Properties
010401 analytical chemistry
Analytical chemistry
Proteins
Protonation
Equipment Design
Cyclotrons
010402 general chemistry
01 natural sciences
Dissociation (chemistry)
Fourier transform ion cyclotron resonance
Article
Mass Spectrometry
0104 chemical sciences
Analytical Chemistry
chemistry.chemical_compound
Tetramer
Electrode
Molecule
Ion trap
Electrodes
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....81b980f601216bcf010b5d9b00bfdf18