Back to Search Start Over

Reynolds number effect on the velocity derivative flatness factor

Authors :
Marcello Meldi
Lyazid Djenidi
R. A. Antonia
Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Acoustique, Aérodynamique, Turbulence (2AT )
Département Fluides, Thermique et Combustion (FTC)
Institut Pprime (PPRIME)
ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut Pprime (PPRIME)
ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers
University of Newcastle [Australia] (UoN)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME)
Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)
University of Newcastle [Callaghan, Australia] (UoN)
Source :
Journal of Fluid Mechanics, Journal of Fluid Mechanics, Cambridge University Press (CUP), 2018, 856, pp.426-433. ⟨10.1017/jfm.2018.717⟩, Journal of Fluid Mechanics, 2018, 856, pp.426-433. ⟨10.1017/jfm.2018.717⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

This paper investigates the effect of a finite Reynolds number (FRN) on the flatness factor ($F$) of the velocity derivative in decaying homogeneous isotropic turbulence by applying the eddy damped quasi-normal Markovian (EDQNM) method to calculate all terms in an analytic expression for $F$ (Djenidi et al., Phys. Fluids, vol. 29 (5), 2017b, 051702). These terms and hence $F$ become constant when the Taylor microscale Reynolds number, $Re_{\unicode[STIX]{x1D706}}$ exceeds approximately $10^{4}$. For smaller values of $Re_{\unicode[STIX]{x1D706}}$, $F$, like the skewness $-S$, increases with $Re_{\unicode[STIX]{x1D706}}$; this behaviour is in quantitative agreement with experimental and direct numerical simulation data. These results indicate that one must first ensure that $Re_{\unicode[STIX]{x1D706}}$ is large enough for the FRN effect to be negligibly small before the hypotheses of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a, pp. 301–305; Dokl. Akad. Nauk SSSR, vol. 32, 1941b, pp. 16–18; J. Fluid Mech., vol. 13, 1962, pp. 82–85) can be assessed unambiguously. An obvious implication is that results from experiments and direct numerical simulations for which $Re_{\unicode[STIX]{x1D706}}$ is well below $10^{4}$ may not be immune from the FRN effect. Another implication is that a power-law increase of $F$ with respect to $Re_{\unicode[STIX]{x1D706}}$, as suggested by the Kolmogorov 1962 theory, is not tenable when $Re_{\unicode[STIX]{x1D706}}$ is large enough.

Details

Language :
English
ISSN :
00221120 and 14697645
Database :
OpenAIRE
Journal :
Journal of Fluid Mechanics, Journal of Fluid Mechanics, Cambridge University Press (CUP), 2018, 856, pp.426-433. ⟨10.1017/jfm.2018.717⟩, Journal of Fluid Mechanics, 2018, 856, pp.426-433. ⟨10.1017/jfm.2018.717⟩
Accession number :
edsair.doi.dedup.....8189d83f1735d00f253b04cbc9e5a50e
Full Text :
https://doi.org/10.1017/jfm.2018.717⟩