Back to Search Start Over

Target-Guided Structured Attention Network for Target-Dependent Sentiment Analysis

Authors :
Pengfei Liu
Cane Wing-Ki Leung
Chengyao Chen
Ji Zhang
Chao He
Source :
Transactions of the Association for Computational Linguistics, Vol 8, Pp 172-182 (2020)
Publication Year :
2020
Publisher :
The MIT Press, 2020.

Abstract

Target-dependent sentiment analysis (TDSA) aims to classify the sentiment of a text towards a given target. The major challenge of this task lies in modeling the semantic relatedness between a target and its context sentence. This paper proposes a novel Target-Guided Structured Attention Network (TG-SAN), which captures target-related contexts for TDSA in a fine-to-coarse manner. Given a target and its context sentence, the proposed TG-SAN first identifies multiple semantic segments from the sentence using a target-guided structured attention mechanism. It then fuses the extracted segments based on their relatedness with the target for sentiment classification. We present comprehensive comparative experiments on three benchmarks with three major findings. First, TG-SAN outperforms the state-of-the-art by up to 1.61% and 3.58% in terms of accuracy and Marco-F1, respectively. Second, it shows a strong advantage in determining the sentiment of a target when the context sentence contains multiple semantic segments. Lastly, visualization results show that the attention scores produced by TG-SAN are highly interpretable

Details

Language :
English
Volume :
8
Database :
OpenAIRE
Journal :
Transactions of the Association for Computational Linguistics
Accession number :
edsair.doi.dedup.....817a4b2affa3e7f92b6946146a5a6a27
Full Text :
https://doi.org/10.1162/tacl_a_00308