Back to Search Start Over

Experimental Measurement of the Divergent Quantum Metric of an Exceptional Point

Authors :
C. Leblanc
Guillaume Malpuech
Jiannian Yao
Qing Liao
Jiahuan Ren
Hongbing Fu
Dmitry Solnyshkov
Feng Li
Yiming Li
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
Source :
Physical Review Letters, Physical Review Letters, American Physical Society, 2021, 127 (10), ⟨10.1103/PhysRevLett.127.107402⟩, Physical Review Letters, 2021, 127 (10), ⟨10.1103/PhysRevLett.127.107402⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The geometry of Hamiltonian's eigenstates is encoded in the quantum geometric tensor (QGT). It contains both the Berry curvature, central to the description of topological matter and the quantum metric. So far the full QGT has been measured only in Hermitian systems, where the role of the quantum metric is mostly shown to determine corrections to physical effects. On the contrary, in non-Hermitian systems, and in particular near exceptional points, the quantum metric is expected to diverge and to often play a dominant role, for example on the enhanced sensing and on wave packet dynamics. In this work, we report the first experimental measurement of the quantum metric in a non-Hermitian system. The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points. We measure the quantum metric's divergence and we determine the scaling exponent $n=-1.01\pm0.08$, which is in agreement with theoretical predictions for the second-order exceptional points.

Details

Language :
English
ISSN :
00319007 and 10797114
Database :
OpenAIRE
Journal :
Physical Review Letters, Physical Review Letters, American Physical Society, 2021, 127 (10), ⟨10.1103/PhysRevLett.127.107402⟩, Physical Review Letters, 2021, 127 (10), ⟨10.1103/PhysRevLett.127.107402⟩
Accession number :
edsair.doi.dedup.....8176bc8bebfffb84416637e1a8425041
Full Text :
https://doi.org/10.1103/PhysRevLett.127.107402⟩