Back to Search
Start Over
A Global Local Numerical Model for the Prediction of Impact Induced Damage in Composite Laminates
- Source :
- Applied composite materials 21 (2014): 457–466. doi:10.1007/s10443-013-9343-6, info:cnr-pdr/source/autori:Riccio, A.; Di Felice, G.; LaManna, G.; Antonucci, E.; Caputo, F.; Lopresto, V.; Zarrelli, M./titolo:A Global-Local Numerical Model for the Prediction of Impact Induced Damage in Composite Laminates/doi:10.1007%2Fs10443-013-9343-6/rivista:Applied composite materials/anno:2014/pagina_da:457/pagina_a:466/intervallo_pagine:457–466/volume:21
- Publication Year :
- 2013
-
Abstract
- Delamination and other damage mechanisms, such as matrix cracks, fibre-matrix debonding and fiber failure can appear as a consequence of impact events with foreign objects under in service conditions and maintenance operations. These phenomena are seldom analyzed together without discussing how the interferences between the different damage mechanisms can influence their evolution under different loading conditions. The present work is focused on the development of a specific numerical procedure, able to take into account the failure modes interaction in composite laminated structures subject to a low velocity impact. As a matter of fact, a very fine mesh refinement is required to correctly evaluate the stress state where the impact induced damage onsets. Hence, in order to reduce the computational cost without compromising the accuracy of results, a global/local approach, characterized by a very refined mesh in the critical impact region interacting with a coarser mesh in the rest of the geometrical domain, has been implemented in the FE model. In the present work, Multi-Point-Constraints (MPC) has been used to link the refined local domain to the coarse global domain without using transition meshes. The implementation and the analyses have been performed in the ABAQUSA (R) FE environment.
- Subjects :
- Work (thermodynamics)
FEM
Materials science
business.industry
Delamination
Finite element analysis
Composite
Structural engineering
Composite laminates
Global-local analysis
Finite element method
Domain (software engineering)
Stress (mechanics)
Matrix (mathematics)
Damage
Low velocity impact
Ceramics and Composites
Polygon mesh
Low velocity Impacts
Composite material
business
Composites
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Applied composite materials 21 (2014): 457–466. doi:10.1007/s10443-013-9343-6, info:cnr-pdr/source/autori:Riccio, A.; Di Felice, G.; LaManna, G.; Antonucci, E.; Caputo, F.; Lopresto, V.; Zarrelli, M./titolo:A Global-Local Numerical Model for the Prediction of Impact Induced Damage in Composite Laminates/doi:10.1007%2Fs10443-013-9343-6/rivista:Applied composite materials/anno:2014/pagina_da:457/pagina_a:466/intervallo_pagine:457–466/volume:21
- Accession number :
- edsair.doi.dedup.....8170bd58e657fa7b9f86ed5b75f69fb9
- Full Text :
- https://doi.org/10.1007/s10443-013-9343-6