Back to Search Start Over

An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers

Authors :
Premi, Enrico
Costa, Tommaso
Moreno, Fermin
Panman, Jessica
Papma, Janne
Pievani, Michela
Pijnenburg, Yolande
Polito, Cristina
Prioni, Sara
Prix, Catharina
Rademakers As London Ontario Geneticist, Rosa
Redaelli, Veronica
Rittman, Tim
Santana, Isabel
Rogaeva, Ekaterina
Rosa-Neto, Pedro
Rossi, Giacomina
Rossor, Martin
Santiago, Beatriz
Scarpini, Elio
Schönecker, Sonja
Semler, Elisa
Shafei, Rachelle
Shoesmith, Christen
Laforce, Robert
Tábuas-Pereira, Miguel
Tainta, Mikel
Taipa, Ricardo
Tang-Wai, David
L Thomas, David
Thompson, Paul
Thonberg, Hakan
Timberlake, Carolyn
Tiraboschi, Pietro
Van Damme, Philip
Ducharme, Simon
Vandenbulcke, Mathieu
Veldsman, Michele
Verdelho, Ana
Villanua, Jorge
Warren, Jason
Wilke, Carlo
Woollacott, Ione
Wlasich, Elisabeth
Zetterberg, Henrik
Zulaica, Miren
Graff, Caroline
Galimberti, Daniela
Masellis, Mario
Tartaglia, Carmela
Rowe, James B
Finger, Elizabeth
Gazzina, Stefano
Tagliavini, Fabrizio
de Mendonça, Alexandre
Vandenberghe, Rik
Gerhard, Alexander
Butler, Chris R
Danek, Adrian
Synofzik, Matthis
Levin, Johannes
Otto, Markus
Ghidoni, Roberta
Benussi, Alberto
Frisoni, Giovanni B
Sorbi, Sandro
Peakman, Georgia
Todd, Emily
Bocchetta, Martina
Rohrer, Johnathan D
Borroni, Barbara
Members, GENFI Consortium
Afonso, Sónia
Rosario Almeida, Maria
Cauda, Franco
Anderl-Straub, Sarah
Andersson, Christin
Antonell, Anna
Arighi, Andrea
Balasa, Mircea
Barandiaran, Myriam
Bargalló, Nuria
Bartha, Robart
Bender, Benjamin
Benussi, Luisa
Gasparotti, Roberto
Bessi, Valentina
Binetti, Giuliano
Black, Sandra
Borrego-Ecija, Sergi
Bras, Jose
Bruffaerts, Rose
Caroppo, Paola
Cash, David
Castelo-Branco, Miguel
Convery, Rhian
Archetti, Silvana
Cope, Thomas
de Arriba, María
Di Fede, Giuseppe
Díaz, Zigor
Duro, Diana
Fenoglio, Chiara
Ferrari, Camilla
B Ferreira, Catarina
Fox, Nick
Freedman, Morris
Alberici, Antonella
Fumagalli, Giorgio
Gabilondo, Alazne
Gauthier, Serge
Giaccone, Giorgio
Gorostidi, Ana
Greaves, Caroline
Guerreiro, Rita
Heller, Carolin
Hoegen, Tobias
Indakoetxea, Begoña
van Swieten, John C
Jelic, Vesna
Jiskoot, Lize
Karnath, Hans Otto
Keren, Ron
Langheinrich, Tobias
João Leitão, Maria
Lladó, Albert
Lombardi, Gemma
Loosli, Sandra
Maruta, Carolina
Sanchez-Valle, Raquel
Mead, Simon
Meeter, Lieke
Miltenberger, Gabriel
van Minkelen, Rick
Mitchell, Sara
Moore, Katrina
Nacmias, Benedetta
Nicholas, Jennifer
Öijerstedt, Linn
Olives, Jaume
GENFI Consortium Members
Neurology
Rowe, James [0000-0001-7216-8679]
Apollo - University of Cambridge Repository
Source :
Journal of Alzheimer's Disease, 86(1), 205-218. IOS Press BV, Neuroscience Institute Publications, Journal of Alzheimer's disease 86(1), 205-218 (2022). doi:10.3233/JAD-215447
Publication Year :
2022

Abstract

Background:Magnetic resonance imaging (MRI) measures may be used as outcome markers in frontotemporal dementia (FTD). Objectives:To predict MRI cortical thickness (CT) at follow-up at the single subject level, using brain MRI acquired at baseline in preclinical FTD. Methods:84 presymptomatic subjects carrying Granulin mutations underwent MRI scans at baseline and at follow-up (31.2±16.5 months). Multivariate nonlinear mixed-effects model was used for estimating individualized CT at follow-up based on baseline MRI data. The automated user-friendly preGRN-MRI script was coded. Results:Prediction accuracy was high for each considered brain region (i.e., prefrontal region, real CT at follow-up versus predicted CT at follow-up, mean error ≤1.87%). The sample size required to detect a reduction in decline in a 1-year clinical trial was equal to 52 subjects (power = 0.80, alpha = 0.05). Conclusion:The preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI atrophy at follow-up in presymptomatic subjects carrying GRN mutations with good performances. This tool could be useful in clinical trials, where deviation of CT from the predicted model may be considered an effect of the intervention itself. Swedish Frontotemporal Dementia Initiative Schörling Foundation; Swedish Research Council: JPND Prefrontals, 2015-02926 ,2018-02754; Swedish Alzheimer foundation; Swedish Brain Foundation; Karolinska Institutet Doctoral Funding; KI StratNeuro; Swedish Dementia foundation and Stockholm County Council ALF/Region Stockholm.

Details

Language :
English
ISSN :
13872877
Volume :
86
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Alzheimer's Disease
Accession number :
edsair.doi.dedup.....815e0a4f9ebcf6d5142f8900ca6d705a
Full Text :
https://doi.org/10.3233/jad-215447