Back to Search
Start Over
Forecasting volatility of Bitcoin
- Source :
- Research In International Business and Finance
- Publication Year :
- 2021
- Publisher :
- Elsevier Ltd., 2021.
-
Abstract
- Since Bitcoin price is highly volatile, forecasting its volatility is crucial for many applications, such as risk management or hedging. We study which model is the most suitable for forecasting Bitcoin volatility. We consider several GARCH and two heterogeneous autoregressive (HAR) models and compare them. Since we utilize realized variance estimated from high frequency data as a proxy for true volatility, we can draw sharper conclusions than studies which use only daily data. We find that EGARCH and APARCH perform best among the GARCH models. HAR models based on realized variance perform better than GARCH models based on daily data. Superiority of HAR models over GARCH models is strongest for short-term volatility forecasts.
- Subjects :
- business.industry
Realized variance
Autoregressive conditional heteroskedasticity
Samfunnsvitenskap: 200::Økonomi: 210::Bedriftsøkonomi: 213 [VDP]
bitcoin
Frequency data
kryptovaluta
Autoregressive model
Econometrics
Economics
Business, Management and Accounting (miscellaneous)
Volatility (finance)
business
Proxy (statistics)
Finance
Risk management
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Research In International Business and Finance
- Accession number :
- edsair.doi.dedup.....8103277aab703fecde53b251a75e965e