Back to Search
Start Over
SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential
- Source :
- EBioMedicine, Vol 72, Iss, Pp 103614-(2021), EBioMedicine
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Background Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to asparaginase-based anti-metabolic treatment. Methods To understand the metabolomic alterations and determine the potential therapeutic target of asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor samples of 102 NKTCL patients. The biological function of solute carrier family 1 member 1 (SLC1A1) on metabolic flux, lymphoma cell growth, and drug sensitivity was further examined in vitro in NK-lymphoma cell line NK-92 and SNK-6, and in vivo in zebrafish xenograft models. Findings In NKTCL patients, serum metabolomic profile was characterized by aberrant glutamine metabolism and SLC1A1 was identified as a central regulator of altered glutaminolysis. Both in vitro and in vivo, ectopic expression of SLC1A1 increased cellular glutamine uptake, enhanced glutathione metabolic flux, and induced glutamine addiction, leading to acceleration of cell proliferation and tumor growth. Of note, SLC1A1 overexpression was significantly associated with PD-L1 downregulation and reduced cytotoxic CD3+/CD8+ T cell activity when co-cultured with peripheral blood mononuclear cells. Asparaginase treatment counteracted SLC1A1-mediated glutamine addiction, restored SLC1A1-induced impaired T-cell immunity. Clinically, high EAAT3 (SLC1A1-encoded protein) expression independently predicted superior progression-free and overall survival in 90 NKTCL patients treated with asparaginase-based regimens. Interpretation SLC1A1 functioned as an extracellular glutamine transporter, promoted tumor growth through reprogramming glutamine metabolism of NKTCL, while rendered tumor cells sensitive to asparaginase treatment. Moreover, SLC1A1-mediated modulation of PD-L1 expression might provide clinical rationale of co-targeting metabolic vulnerability and immunosuppressive microenvironment in NKTCL. Funding This study was supported, in part, by research funding from the National Natural Science Foundation of China (82130004, 81830007 and 81900192), Chang Jiang Scholars Program, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research Plan of SHDC (2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Shanghai Chenguang Program (19CG15), Shanghai Sailing Program (19YF1430800), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46), and Shanghai Yi Yuan Xin Xing Program.
- Subjects :
- Male
Medicine (General)
Asparaginase
EAAT3
Glutamine
T cell
RNA-sequencing
Down-Regulation
CD8-Positive T-Lymphocytes
General Biochemistry, Genetics and Molecular Biology
Cell Line
chemistry.chemical_compound
R5-920
Animals
Humans
Metabolomics
Medicine
Solute carrier family 1 member 1
Zebrafish
Cell Proliferation
Glutaminolysis
business.industry
Cell growth
Anti-PD-1 antibody
General Medicine
Middle Aged
Natural-killer T-cell lymphoma
medicine.disease
Natural killer T cell
Lymphoma
Lymphoma, Extranodal NK-T-Cell
Excitatory Amino Acid Transporter 3
medicine.anatomical_structure
chemistry
Leukocytes, Mononuclear
Cancer research
Natural Killer T-Cells
Female
business
CD8
Research Paper
Subjects
Details
- ISSN :
- 23523964
- Volume :
- 72
- Database :
- OpenAIRE
- Journal :
- eBioMedicine
- Accession number :
- edsair.doi.dedup.....80fdf36d21d7b791ce9cc42327195e51