Back to Search Start Over

Classification of breast microcalcifications using dual-energy mammography

Authors :
Alaadin Alayoubi
Ahmed S. Zidan
Bahaa Ghammraoui
Stephen J. Glick
Andrey Makeev
Source :
Journal of medical imaging (Bellingham, Wash.). 6(1)
Publication Year :
2018

Abstract

The potential of dual-energy mammography for microcalcification classification was investigated with simulation and phantom studies. Classification of type I/II calcifications was performed using the tissue attenuation ratio as a performance metric. The simulation and phantom studies were carried out using breast phantoms of 50% fibroglandular and 50% adipose tissue composition and thicknessess ranging from 3 to 6 cm. The phantoms included models of microcalcifications ranging in size between 200 and 900 μ m . The simulation study was carried out with fixed MGD of 1.5 mGy using various low- and high-kVp spectra, aluminum filtration thicknesses, and exposure distribution ratios to predict an optimized imaging protocol for the phantom study. Attenuation ratio values were calculated for microcalcification signals of different types at two different voltage settings. ROC analysis showed that classification performance as indicated by the area under the ROC curve was always greater than 0.95 for 1.5 mGy deposited mean glandular dose. This study provides encouraging first results in classifying malignant and benign microcalcifications based solely on dual-energy mammography images.

Details

ISSN :
23294302
Volume :
6
Issue :
1
Database :
OpenAIRE
Journal :
Journal of medical imaging (Bellingham, Wash.)
Accession number :
edsair.doi.dedup.....80dae1621a6eaefca9eb9f88e1f156d3