Back to Search
Start Over
Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
- Source :
- The BMJ
- Publication Year :
- 2020
- Publisher :
- BMJ Publishing Group Ltd., 2020.
-
Abstract
- Objective To systematically examine the design, reporting standards, risk of bias, and claims of studies comparing the performance of diagnostic deep learning algorithms for medical imaging with that of expert clinicians. Design Systematic review. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and the World Health Organization trial registry from 2010 to June 2019. Eligibility criteria for selecting studies Randomised trial registrations and non-randomised studies comparing the performance of a deep learning algorithm in medical imaging with a contemporary group of one or more expert clinicians. Medical imaging has seen a growing interest in deep learning research. The main distinguishing feature of convolutional neural networks (CNNs) in deep learning is that when CNNs are fed with raw data, they develop their own representations needed for pattern recognition. The algorithm learns for itself the features of an image that are important for classification rather than being told by humans which features to use. The selected studies aimed to use medical imaging for predicting absolute risk of existing disease or classification into diagnostic groups (eg, disease or non-disease). For example, raw chest radiographs tagged with a label such as pneumothorax or no pneumothorax and the CNN learning which pixel patterns suggest pneumothorax. Review methods Adherence to reporting standards was assessed by using CONSORT (consolidated standards of reporting trials) for randomised studies and TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) for non-randomised studies. Risk of bias was assessed by using the Cochrane risk of bias tool for randomised studies and PROBAST (prediction model risk of bias assessment tool) for non-randomised studies. Results Only 10 records were found for deep learning randomised clinical trials, two of which have been published (with low risk of bias, except for lack of blinding, and high adherence to reporting standards) and eight are ongoing. Of 81 non-randomised clinical trials identified, only nine were prospective and just six were tested in a real world clinical setting. The median number of experts in the comparator group was only four (interquartile range 2-9). Full access to all datasets and code was severely limited (unavailable in 95% and 93% of studies, respectively). The overall risk of bias was high in 58 of 81 studies and adherence to reporting standards was suboptimal ( Conclusions Few prospective deep learning studies and randomised trials exist in medical imaging. Most non-randomised trials are not prospective, are at high risk of bias, and deviate from existing reporting standards. Data and code availability are lacking in most studies, and human comparator groups are often small. Future studies should diminish risk of bias, enhance real world clinical relevance, improve reporting and transparency, and appropriately temper conclusions. Study registration PROSPERO CRD42019123605.
- Subjects :
- Diagnostic Imaging
medicine.medical_specialty
Blinding
MEDLINE
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Deep Learning
Bias
Artificial Intelligence
Physicians
Image Processing, Computer-Assisted
Medical imaging
medicine
Humans
Medical physics
Randomized Controlled Trials as Topic
business.industry
Deep learning
Research
Absolute risk reduction
Consolidated Standards of Reporting Trials
General Medicine
Reference Standards
Clinical trial
Research Design
030220 oncology & carcinogenesis
Model risk
Artificial intelligence
business
Algorithms
Subjects
Details
- Language :
- English
- ISSN :
- 17561833 and 09598138
- Volume :
- 368
- Database :
- OpenAIRE
- Journal :
- The BMJ
- Accession number :
- edsair.doi.dedup.....80cd7616512b15581bbdbb81f3f56f11