Back to Search Start Over

THE EFFECTIVE CONE OF MODULI SPACES OF SHEAVES ON A SMOOTH QUADRIC SURFACE

Authors :
Timothy J. Ryan
Source :
Nagoya Mathematical Journal. 232:151-215
Publication Year :
2017
Publisher :
Cambridge University Press (CUP), 2017.

Abstract

Let $\xi$ be a stable Chern character on $\mathbb{P}^1 \times \mathbb{P}^1$, and let $M(\xi)$ be the moduli space of Gieseker semistable sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ with Chern character $\xi$. In this paper, we provide an approach to computing the effective cone of $M(\xi)$ after showing that it is a Mori dream space for all $\xi$. We find Brill-Noether divisors spanning extremal rays of the effective cone using resolutions of the general elements of $M(\xi)$ which are found using the machinery of exceptional bundles. We use this approach to provide many examples of extremal rays in these effective cones. In particular, we completely compute the effective cone of the first fifteen Hilbert schemes of points on $\mathbb{P}^1 \times \mathbb{P}^1$.<br />Comment: 42 pages

Details

ISSN :
21526842 and 00277630
Volume :
232
Database :
OpenAIRE
Journal :
Nagoya Mathematical Journal
Accession number :
edsair.doi.dedup.....80c61fc702fd781f2ef1c55ae9505bc5
Full Text :
https://doi.org/10.1017/nmj.2017.24