Back to Search
Start Over
THE EFFECTIVE CONE OF MODULI SPACES OF SHEAVES ON A SMOOTH QUADRIC SURFACE
- Source :
- Nagoya Mathematical Journal. 232:151-215
- Publication Year :
- 2017
- Publisher :
- Cambridge University Press (CUP), 2017.
-
Abstract
- Let $\xi$ be a stable Chern character on $\mathbb{P}^1 \times \mathbb{P}^1$, and let $M(\xi)$ be the moduli space of Gieseker semistable sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ with Chern character $\xi$. In this paper, we provide an approach to computing the effective cone of $M(\xi)$ after showing that it is a Mori dream space for all $\xi$. We find Brill-Noether divisors spanning extremal rays of the effective cone using resolutions of the general elements of $M(\xi)$ which are found using the machinery of exceptional bundles. We use this approach to provide many examples of extremal rays in these effective cones. In particular, we completely compute the effective cone of the first fifteen Hilbert schemes of points on $\mathbb{P}^1 \times \mathbb{P}^1$.<br />Comment: 42 pages
- Subjects :
- Pure mathematics
General Mathematics
010102 general mathematics
Birational geometry
Algebraic geometry
01 natural sciences
Stability (probability)
Moduli space
Minimal model program
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Cone (topology)
0103 physical sciences
FOS: Mathematics
010307 mathematical physics
0101 mathematics
Algebraic Geometry (math.AG)
14J60 (Primary), 14D20, 14E30, 13D02 (Secondary)
Mathematics
Subjects
Details
- ISSN :
- 21526842 and 00277630
- Volume :
- 232
- Database :
- OpenAIRE
- Journal :
- Nagoya Mathematical Journal
- Accession number :
- edsair.doi.dedup.....80c61fc702fd781f2ef1c55ae9505bc5
- Full Text :
- https://doi.org/10.1017/nmj.2017.24