Back to Search Start Over

Martensitic fcc-hcp transformation pathway in solid krypton and xenon and its effect on their equations of state

Authors :
A. D. Rosa
A. Dewaele
G. Garbarino
V. Svitlyk
G. Morard
F. De Angelis
M. Krstulović
R. Briggs
T. Irifune
O. Mathon
M. A. Bouhifd
European Synchroton Radiation Facility [Grenoble] (ESRF)
Laboratoire Matière en Conditions Extrêmes
Université Paris-Saclay
Institut des Sciences de la Terre (ISTerre)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Laboratoire Magmas et Volcans (LMV)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement et la société-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
Source :
Physical Review B 105(2022), 144103, Physical Review B, Physical Review B, 2022, 105, ⟨10.1103/PhysRevB.105.144103⟩
Publication Year :
2022

Abstract

International audience; The martensitic transformation is a fundamental physical phenomenon at the origin of important industrial applications. However, the underlying microscopic mechanism, which is of critical importance to explain the outstanding mechanical properties of martensitic materials, is still not fully understood. This is because for most martensitic materials the transformation is a fast process that makes in situ studies extremely challenging. Noble solids krypton and xenon undergo a progressive pressure-induced face-centered cubic (fcc) to hexagonal close-packed (hcp) martensitic transition with a very wide coexistence domain. Here, we took advantage of this unique feature to study the detailed transformation progress at the atomic level by employing in situ x-ray diffraction and absorption spectroscopy. We evidenced a four-stage pathway and suggest that the lattice mismatch between the fcc and hcp forms plays a key role in the generation of strain. We also determined precisely the effect of the transformation on the compression behavior of these materials.

Details

Language :
English
ISSN :
24699950 and 24699969
Database :
OpenAIRE
Journal :
Physical Review B 105(2022), 144103, Physical Review B, Physical Review B, 2022, 105, ⟨10.1103/PhysRevB.105.144103⟩
Accession number :
edsair.doi.dedup.....80b25ec47ca349f513c9491228438343
Full Text :
https://doi.org/10.1103/PhysRevB.105.144103⟩