Back to Search Start Over

State estimation in nonlinear parametric time dependent systems using tensor train

Authors :
Lombardi Damiano
COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
ANR-18-CE46-0001,ADAPT,Méthodes tensorielles parallèles dynamiques et adaptatives(2018)
Source :
International Journal for Numerical Methods in Engineering, International Journal for Numerical Methods in Engineering, 2022, ⟨10.1002/nme.7067⟩
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

International audience; In the present work we propose a reduced-order method to solve the state estimation problem when nonlinear parametric time-dependent systems are at hand. The method is based on the approximation of the set of system solutions by means of a Tensor Train format. The particular structure of Tensor Train makes it possible to set up both a variational and a sequential method. Several numerical experiments are proposed to assess the behaviour of the method.

Details

ISSN :
10970207 and 00295981
Volume :
123
Database :
OpenAIRE
Journal :
International Journal for Numerical Methods in Engineering
Accession number :
edsair.doi.dedup.....80805af6f7983a0a8177a6ab08d39f44
Full Text :
https://doi.org/10.1002/nme.7067