Back to Search Start Over

Correction: Balsamo, G., et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing 2018, 10(12), 2038; doi:10.3390/rs10122038

Authors :
Joaquín Muñoz-Sabater
Andrew Brown
Xubin Zeng
Rene Orth
Florence Rabier
Meghan F. Cronin
Irina Sandu
Sonia I. Seneviratne
Helene T. Hewitt
Gianpaolo Balsamo
Jean Bidlot
Michael Ek
Susanne Mecklenburg
Patricia de Rosnay
Cristina Lupu
Anton Beljaars
Emanuel Dutra
Frédéric Chevallier
Nicolas Bousserez
Hannah Cloke
Kristian Mogensen
Roberto Buizza
Jean Francois Mahfouf
Souhail Boussetta
Paul A. Dirmeyer
Clément Albergel
Nils Wedi
Pierre Gentine
Yann Kerr
Joe McNorton
Margarita Choulga
Rolf H. Reichle
Florian Pappenberger
Sujay V. Kumar
Remko Uijlenhoet
Eleanor Blyth
Carlo Buontempo
Ben Ruston
Gabriele Arduini
R.I. Woolway
Sarah Keeley
Anna Agusti-Panareda
Steffen Tietsche
Mohamed Dahoui
Isabel F. Trigo
Matthias Drusch
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Remote Sensing, Remote Sensing, MDPI, 2019, 11 (8), pp.941. ⟨10.3390/RS11080941⟩, Remote Sensing, 2019, 11 (8), pp.941. ⟨10.3390/RS11080941⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing, Remote Sensing, MDPI, 2019, 11 (8), pp.941. ⟨10.3390/RS11080941⟩, Remote Sensing, 2019, 11 (8), pp.941. ⟨10.3390/RS11080941⟩
Accession number :
edsair.doi.dedup.....8079ce3d295fb3ecc411c3f6d4501c06