Back to Search Start Over

Deciphering the mechanism of coordinative chain transfer polymerization of ethylene using neodymocene catalysts and dialkylmagnesium

Authors :
Christophe Boisson
Rodolfo Ribeiro
Sébastien Norsic
Lionel Perrin
Franck D'Agosto
Hajar Nsiri
Rui Ruivo
Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2)
Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Interface Theory Experiment : Mechanism & Modeling (ITEMM)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Source :
ACS Catalysis, ACS Catalysis, American Chemical Society, 2015, 6 (2), pp.851-860. ⟨10.1021/acscatal.5b02316⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; Ethylene polymerizations were performed in toluene using the neodymocene complex (C5Me5)2NdCl2Li(OEt2)2 or {(Me2Si(C13H8)2)Nd(μ-BH4)[(μ-BH4)Li(THF)]}2 in combination with n-butyl-n-octylmagnesium used as both alkylating and chain transfer agent. The kinetics were followed for various [Mg]/[Nd] ratios, at different polymerization temperatures, with or without ether as a cosolvent. These systems allowed us to (i) efficiently obtain narrowly distributed and targeted molar masses, (ii) characterize three phases during the course of polymerization, (iii) estimate the propagation activation energy (17 kcal mol–1), (iv) identify the parameters that control chain transfer, and (v) demonstrate enhanced polymerization rates and molar mass distribution control in the presence of ether as cosolvent. This experimental set of data is supported by a computational investigation at the DFT level that rationalizes the chain transfer mechanism and the specific microsolvation effects in the presence of cosolvents at the molecular scale. This joint experimental/computational investigation offers the basis for further catalyst developments in the field of coordinative chain transfer polymerization (CCTP).

Details

Language :
English
ISSN :
21555435
Database :
OpenAIRE
Journal :
ACS Catalysis, ACS Catalysis, American Chemical Society, 2015, 6 (2), pp.851-860. ⟨10.1021/acscatal.5b02316⟩
Accession number :
edsair.doi.dedup.....803b6a7503e0458ecfa2f72b9cad9904
Full Text :
https://doi.org/10.1021/acscatal.5b02316⟩