Back to Search
Start Over
A Universal Range Shifter and Range Compensator Can Enable Proton Pencil Beam Scanning Single-Energy Bragg Peak FLASH-RT Treatment Using Current Commercially Available Proton Systems
- Source :
- International journal of radiation oncology, biology, physics. 113(1)
- Publication Year :
- 2021
-
Abstract
- Transmission beams have been proposed for ultra-high dose (or FLASH) proton planning, limiting the organ sparing potentials of proton therapy. By pulling back the ranges of the highest energy proton beams and compensating proton ranges to adapt to the target distally, the exit dose of proton beams can be eliminated to better protect organs at risk while still preserving FLASH dose rate delivery.An inverse planning tool was developed to optimize intensity modulated proton therapy using a single-energy layer for FLASH radiation therapy planning. The range pull-backs were calculated to stop single-energy proton beams at the distal edge of the target. The spot map and weights of each field were optimized to achieve a sufficient dose rate using proton beam Bragg peaks. A C-shape target in phantom, along with 6 consecutive lung cancer patients previously treated using proton stereotactic body radiation therapy were planned using this novel Bragg Peak method and also transmission technique. Dosimetry characteristics and 3-dimensional dose rate were investigated.The minimum monitor units (MU) for transmission and Bragg peak plans were 400 MU/spot and 1200 MU/spot, respectively, corresponding to spot peak dose rates of 670 GyRBE (relative biological effectiveness) per second and 1950 GyRBE per second. Bragg peak plans yield a generally comparable target uniformity while significantly reducing dose spillage volume from the low to medium dose level. For all the 6 lung cases delivery of 34 GyRBE in 1 fraction, assessing Radiation Therapy Oncology Group 0915 constraints, the lung VThis first proof-of-concept study has demonstrated this novel method of combining range pull-back and powerful inverse optimization capable of achieving FLASH dose rate based on currently available machine parameters using a single-energy Bragg peak. Similar target coverage and uniformity can be maintained by Bragg peak FLASH plans while substantially improving the sparing of organs at risk compared with transmission plans.
Details
- ISSN :
- 1879355X
- Volume :
- 113
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- International journal of radiation oncology, biology, physics
- Accession number :
- edsair.doi.dedup.....801c72f474755977e5789446f1489b29