Back to Search Start Over

Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization

Authors :
Formenti, Ludovico
Iwanycki Ahlstrand, Natalie
Hassemer, Gustavo
Glauser, Gaëtan
van den Hoogen, Johan
Rønsted, Nina
van der Heijden, Marcel
Crowther, Thomas W
Rasmann, Sergio
University of Zurich
Rasmann, Sergio
Source :
Formenti, Ludovico; Iwanycki Ahlstrand, Natalie; Hassemer, Gustavo; Glauser, Gaëtan; van den Hoogen, Johan; Rønsted, Nina; van der Heijden, Marcel; Crowther, Thomas W; Rasmann, Sergio (2023). Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization. iScience, 26(5), p. 106632. Elsevier 10.1016/j.isci.2023.106632 , iScience, 26 (5), Formenti, L, Ahlstrand, N I, Hassemer, G, Glauser, G, van den Hoogen, J, Rønsted, N, van der Heijden, M, Crowther, T W & Rasmann, S 2023, ' Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization ', iScience, vol. 26, no. 5, 106632 . https://doi.org/10.1016/j.isci.2023.106632
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Arbuscular mycorrhizal fungi (AMF) have evolved associations with roots of 60% plant species, but the net benefit for plants vary broadly from mutualism to parasitism. Yet, we lack a general understanding of the evolutionary and ecological forces driving such variation. To this end, we conducted a comparative phylogenetic experiment with 24 species of Plantago, encompassing worldwide distribution, to address the effect of evolutionary history and environment on plant growth and chemical defenses in response to AMF colonization. We demonstrate that different species within one plant genus vary greatly in their ability to associate with AMF, and that AMF arbuscule colonization intensity decreases monotonically with increasing phylogenetic branch length, but not with concomitant changes in pedological and climatic conditions across species. Moreover, we demonstrate that species with the highest colonization levels are also those that change their defensive chemistry the least. We propose that the costs imposed by high AMF colonization in terms of reduced changes in secondary chemistry might drive the observed macroevolutionary decline in mycorrhization.<br />iScience, 26 (5)<br />ISSN:2589-0042

Details

Language :
English
ISSN :
25890042
Database :
OpenAIRE
Journal :
Formenti, Ludovico; Iwanycki Ahlstrand, Natalie; Hassemer, Gustavo; Glauser, Ga&#235;tan; van den Hoogen, Johan; R&#248;nsted, Nina; van der Heijden, Marcel; Crowther, Thomas W; Rasmann, Sergio (2023). Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization. iScience, 26(5), p. 106632. Elsevier 10.1016/j.isci.2023.106632 <http://dx.doi.org/10.1016/j.isci.2023.106632>, iScience, 26 (5), Formenti, L, Ahlstrand, N I, Hassemer, G, Glauser, G, van den Hoogen, J, R&#248;nsted, N, van der Heijden, M, Crowther, T W &amp; Rasmann, S 2023, &#39; Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization &#39;, iScience, vol. 26, no. 5, 106632 . https://doi.org/10.1016/j.isci.2023.106632
Accession number :
edsair.doi.dedup.....801b3d2f701af6cda61caa6e361a82c5