Back to Search Start Over

Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification

Authors :
Patrick Gallinari
Mohamed Elati
Alejandro Lopez-Rincon
Olivier Schwander
Alberto Tonda
Benjamin Piwowarski
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Génie et Microbiologie des Procédés Alimentaires (GMPA)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Machine Learning and Information Access (MLIA)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Bases de Données (BD)
INSERM-ITMO cancer project 'LIONS' [BIO2015-04]
AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189 (CRIStAL)
Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Applied Soft Computing, Applied Soft Computing, 2018, 65, pp.91-100. ⟨10.1016/j.asoc.2017.12.036⟩, Applied Soft Computing, Elsevier, 2018, 65, pp.91-100. ⟨10.1016/j.asoc.2017.12.036⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Cancer diagnosis is currently undergoing a paradigm shift with the incorporation of molecular biomarkers as part of routine diagnostic panel. This breakthrough discovery directs researches to examine the role of microRNA in cancer, since its deregulation is often associated with almost all human tumors. Such differences frequently recur in tumor-specific microRNA signatures, which are helpful to diagnose tissue of origin and tumor subtypes. Nonetheless, the resulting classification problem is far from trivial, as there are hundreds of microRNA types, and tumors are non-linearly correlated to the presence of several overexpressions. In this paper, we propose to apply an evolutionary optimized convolutional neural network classifier to this complex task. The presented approach is compared against 21 state-of-the-art classifiers, on a real-world dataset featuring 8129 patients, for 29 different classes of tumors, using 1046 different biomarkers. As a result of the comparison, we also present a meta-analysis on the dataset, identifying the classes on which the collective performance of the considered classifiers is less effective, and thus possibly singling out types of tumors for which biomarker tests might be less reliable.

Details

Language :
English
ISSN :
15684946
Database :
OpenAIRE
Journal :
Applied Soft Computing, Applied Soft Computing, 2018, 65, pp.91-100. ⟨10.1016/j.asoc.2017.12.036⟩, Applied Soft Computing, Elsevier, 2018, 65, pp.91-100. ⟨10.1016/j.asoc.2017.12.036⟩
Accession number :
edsair.doi.dedup.....8016bb8328d635350c8a8d42e11f793d