Back to Search
Start Over
Knapp–Stein type intertwining operators for symmetric pairs
- Source :
- Möllers, J, Ørsted, B & Oshima, Y 2016, ' Knapp-Stein type intertwining operators for symmetric pairs ', Advances in Mathematics, vol. 294, pp. 256-306 . https://doi.org/10.1016/j.aim.2016.02.024, Möllers, J, Ørsted, B & Oshima, Y 2015, ' Knapp-Stein type intertwining operators for symmetric pairs ' submitted .
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- For a symmetric pair $(G,H)$ of reductive groups we construct a family of intertwining operators between spherical principal series representations of $G$ and $H$ that are induced from parabolic subgroups satisfying certain compatibility conditions. The operators are given explicitly in terms of their integral kernels and we prove convergence of the integrals for an open set of parameters and meromorphic continuation. We further discuss uniqueness of intertwining operators, and for the rank one cases $$ (G,H)=(SU(1,n;\mathbb{F}),S(U(1,m;\mathbb{F})\times U(n-m;\mathbb{F}))), \qquad \mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{O}, $$ and for the pair $$ (G,H)=(GL(4n,\mathbb{R}),GL(2n,\mathbb{C})) $$ we show that for a certain choice of maximal parabolic subgroups our operators generically span the space of intertwiners.<br />44 pages, added another detailed example in Section 5
- Subjects :
- Secondary
Pure mathematics
General Mathematics
Open set
Double flag variety
01 natural sciences
0103 physical sciences
FOS: Mathematics
Invariant trilinear forms
Uniqueness
Symmetric pair
Representation Theory (math.RT)
Symmetry breaking operator
0101 mathematics
Meromorphic function
Mathematics
010102 general mathematics
Intertwining operator
Operator theory
Principal series
Primary 22E45, Secondary 47G10
Algebra
Knapp-Stein intertwiner
010307 mathematical physics
Mathematics - Representation Theory
Primary
Subjects
Details
- ISSN :
- 00018708
- Volume :
- 294
- Database :
- OpenAIRE
- Journal :
- Advances in Mathematics
- Accession number :
- edsair.doi.dedup.....7ffcd6c8b9f4dadbf56f05ce3036b60c
- Full Text :
- https://doi.org/10.1016/j.aim.2016.02.024