Back to Search Start Over

Knapp–Stein type intertwining operators for symmetric pairs

Authors :
Bent Ørsted
Jan Möllers
Yoshiki Oshima
Source :
Möllers, J, Ørsted, B & Oshima, Y 2016, ' Knapp-Stein type intertwining operators for symmetric pairs ', Advances in Mathematics, vol. 294, pp. 256-306 . https://doi.org/10.1016/j.aim.2016.02.024, Möllers, J, Ørsted, B & Oshima, Y 2015, ' Knapp-Stein type intertwining operators for symmetric pairs ' submitted .
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

For a symmetric pair $(G,H)$ of reductive groups we construct a family of intertwining operators between spherical principal series representations of $G$ and $H$ that are induced from parabolic subgroups satisfying certain compatibility conditions. The operators are given explicitly in terms of their integral kernels and we prove convergence of the integrals for an open set of parameters and meromorphic continuation. We further discuss uniqueness of intertwining operators, and for the rank one cases $$ (G,H)=(SU(1,n;\mathbb{F}),S(U(1,m;\mathbb{F})\times U(n-m;\mathbb{F}))), \qquad \mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{O}, $$ and for the pair $$ (G,H)=(GL(4n,\mathbb{R}),GL(2n,\mathbb{C})) $$ we show that for a certain choice of maximal parabolic subgroups our operators generically span the space of intertwiners.<br />44 pages, added another detailed example in Section 5

Details

ISSN :
00018708
Volume :
294
Database :
OpenAIRE
Journal :
Advances in Mathematics
Accession number :
edsair.doi.dedup.....7ffcd6c8b9f4dadbf56f05ce3036b60c
Full Text :
https://doi.org/10.1016/j.aim.2016.02.024