Back to Search Start Over

Homeostatic plasticity shapes the visual system’s first synapse

Authors :
Florentina Soto
Nai-Wen Tien
Ning Shen
Robert E. Johnson
James T. Pearson
Daniel Kerschensteiner
Source :
Nature Communications, Vol 8, Iss 1, Pp 1-10 (2017), Nature Communications
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Vision in dim light depends on synapses between rods and rod bipolar cells (RBCs). Here, we find that these synapses exist in multiple configurations, in which single release sites of rods are apposed by one to three postsynaptic densities (PSDs). Single RBCs often form multiple PSDs with one rod; and neighboring RBCs share ~13% of their inputs. Rod-RBC synapses develop while ~7% of RBCs undergo programmed cell death (PCD). Although PCD is common throughout the nervous system, its influences on circuit development and function are not well understood. We generate mice in which ~53 and ~93% of RBCs, respectively, are removed during development. In these mice, dendrites of the remaining RBCs expand in graded fashion independent of light-evoked input. As RBC dendrites expand, they form fewer multi-PSD contacts with rods. Electrophysiological recordings indicate that this homeostatic co-regulation of neurite and synapse development preserves retinal function in dim light.<br />Retinal rod bipolar cells (RBCs) partially undergo programmed cell death triggering cell density-dependent plasticity. This study shows that increased removal of RBCs using genetic approaches causes dendrites of the remaining RBCs to expand and contact more rod photoreceptors while reducing connectivity with each.

Details

Language :
English
ISSN :
20411723
Volume :
8
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....7feb1bcd1be2f9a0808b033504a71b55