Back to Search
Start Over
Protective effects of the antioxidant extract collected from Styela clava tunics on UV radiation-induced skin aging in hairless mice
- Source :
- International Journal of Molecular Medicine. 38:1565-1577
- Publication Year :
- 2016
- Publisher :
- Spandidos Publications, 2016.
-
Abstract
- Ultraviolet (UV) radiation is considered a primary cause of skin damage, which is characterized by deep wrinkles, roughness, laxity and pigmentation through oxidative stress and oxidative photodamage. To examine the therapeutic effects of ethanol extract of Styela clava tunics (EtSCT) on UV radiation-induced skin aging in hairless mice, alterations in skin phenotype, histological structures, inflammation, endoplasmic reticulum (ER) stress, oxidative conditions and toxicity were investigated during 13 weeks of UV irradiation and topical application of EtSCT. EtSCT showed high reducing power (3.1%), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (92.7%) and NO scavenging activity (15.6%) due to its high total flavonoids (15.3 mg/ml) and total phenolics (36.8 mg/ml). The topical application of EtSCT suppressed photoaging of the skin of UV-irradiated mice, and this was demonstrated by the inhibition of wrinkle formation, the suppression of the erythema index as well as the prevention of transepidermal water loss. Additionally, the epidermal thickness and adipocytes number were recovered to a similar level as that in the no radiation group in the UV + EtSCT‑treated groups compared with the UV + vehicle‑treated group, and the expression of collagen I increased. The attenuation of mitogen‑activated protein kinase and ER stress signaling pathways activated by reactive oxygen species was also detected in the UV + EtSCT‑treated group. Inflammatory responses including the infiltration of mast cells, CD31 expression and interleukin-6 secretion were significantly lower in the UV + EtSCT-treated groups. Moreover, the concentration of malondialdehyde was reduced and the activity of superoxide dismutase was effectively recovered in the UV + EtSCT-treated groups compared with that in the vehicle-treated groups. Liver and kidney toxicity factors were maintained at a constant level. These results suggest that EtSCT has the potential for use as therapeutic drug which protects against skin aging by regulating the skin morphology, histopathological structures, ER stress, inflammation and oxidative conditions.
- Subjects :
- Male
0301 basic medicine
Erythema
MAP Kinase Signaling System
Ultraviolet Rays
Photoaging
Blotting, Western
Pharmacology
Protective Agents
medicine.disease_cause
Antioxidants
Skin Aging
Superoxide dismutase
030207 dermatology & venereal diseases
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Phenols
Genetics
medicine
Animals
Urochordata
Skin
Flavonoids
chemistry.chemical_classification
Mice, Hairless
Reactive oxygen species
Ethanol
biology
Superoxide Dismutase
Tissue Extracts
General Medicine
Endoplasmic Reticulum Stress
Malondialdehyde
medicine.disease
Water Loss, Insensible
Hairless
030104 developmental biology
chemistry
Cancer research
biology.protein
Epidermis
Mitogen-Activated Protein Kinases
medicine.symptom
Oxidative stress
Subjects
Details
- ISSN :
- 1791244X and 11073756
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Medicine
- Accession number :
- edsair.doi.dedup.....7fcceeb82e2e33452e7bc36e8d91a57a
- Full Text :
- https://doi.org/10.3892/ijmm.2016.2740